参考文章:(GTM135)Advanced Linear Algebra
度量空间
定义
度量空间(metric space)是二元组 ( M , d ) (M,d) (M,d),其中 M M M是非空集合,度量(metric)是 d : M × M → R d:M \times M \to R d:M×M→R是实值函数,它有如下性质:
- 正定性(positive definiteness): ∀ x , y ∈ M , d ( x , y ) ≥ 0 \forall x,y \in M,\,\, d(x,y) \ge 0 ∀x,y∈M,d(x,y)≥0,并且 d ( x , y ) = 0 ⟺ x = y d(x,y)=0 \iff x=y d(x,y)=0⟺x=y
- 对称性(symmetry): ∀ x , y ∈ M , d ( x , y ) = d ( y , x ) \forall x,y \in M,\,\, d(x,y)=d(y,x) ∀x,y∈M,d(x,y)=d(y,x)
- 三角不等式(triangle inequality): ∀ x , y , z ∈ M , d ( x , y ) ≤ d ( x , z ) + d ( z , y ) \forall x,y,z \in M,\,\, d(x,y) \le d(x,z)+d(z,y) ∀x,y,z∈M,d(x,y)≤d(x,z)+d(z,y)
我们将 d ( x , y ) ∈ R d(x,y) \in R d(x,y)∈R叫做两点间的距离(distance)。
注意与测度空间 (measure space) 和测度(measure)做区分:metric针对集合中的两个点,measure针对集合。
例子
-
集合 R n R^n Rn中,定义欧几里得度量(Euclidean metric):
d ( x , y ) = ( x 1 − y 1 ) 2 + ⋯ + ( x n − y n ) 2 d(x,y) = \sqrt{(x_1-y_1)^2+\cdots+(x_n-y_n)^2} d(x,y)=(x1−y1)2+⋯+(xn−yn)2 -
集合 C n C^n Cn中,定义幺正度量/酉度量(unitary metric):
d ( x , y ) = ∣ x 1 − y 1 ∣ 2 + ⋯ + ∣ x n − y n ∣ 2 d(x,y) = \sqrt{|x_1-y_1|^2+\cdots+|x_n-y_n|^2} d(x,y)=∣x1−y1∣2+⋯+∣xn−yn∣2 -
集合 C [ a , b ] C[a,b] C[a,b]由所有定义在区间 [ a , b ] [a,b] [a,b]上的连续复值函数组成,定义上确界度量(sup metric):
d ( f , g ) = sup x ∈ [ a , b ] ∣ f ( x ) − g ( x ) ∣ d(f,g)=\underset{x \in [a,b]}{\sup} |f(x)-g(x)| d(f,g)=x∈[a,b]sup∣f(x)−g(x)∣ -
离散度量空间 M M M,定义离散度量(discrete metric)
d ( x , y ) = { 0 , x = y 1 , x ≠ y d(x,y) = \left\{ \begin{aligned} 0, && x=y\\ 1, && x \neq y\\ \end{aligned} \right. d(x,y)={0,1,x=yx=y -
对于 p ≥ 1 p\ge 1 p≥1,令集合 l p l^p lp包含所有的复数序列 x = ( x n ) x=(x_n) x=(xn),它们满足
∑ n = 1 ∞ ∣ x n ∣ p < ∞ \sum_{n=1}^\infty |x_n|^p < \infty n=1∑∞∣xn∣p<∞
定义 p − p- p−范数( p − n o r m p-norm p−norm):
∥ x ∥ p = ( ∑ n = 1 ∞ ∣ x n ∣ p ) 1 / p \|x\|_p = \left( \sum_{n=1}^\infty |x_n|^p \right)^{1/p} ∥x∥p=(n=1∑∞∣xn∣p)1/p
于是度量可以为 d ( x , y ) = ∥ x − y ∥ p d(x,y)=\|x-y\|_p d(x,y)=∥x−y∥p -
集合 l ∞ l^\infty l∞包含所有的有界复数序列,定义度量:
d ( x , y ) = sup n ∣ x n − y n ∣ d(x,y) = \underset{n}{\sup} |x_n - y_n| d(x,y)=nsup∣xn−yn∣
Holder’s inequality:令 p , q ≥ 1 , p + q = p q p,q \ge 1,\,\, p+q=pq p,q≥1,p+q=pq,如果 x ∈ l p , y ∈ l q x \in l^p,y \in l^q x∈lp,y∈lq,那么乘积序列 x y = ( x n y n ) ∈ l 1 xy=(x_ny_n) \in l^1 xy=(xnyn)∈l1,并且 ∥ x y ∥ 1 ≤ ∥ x ∥ p ∥ y ∥ q \|xy\|_1 \le \|x\|_p \|y\|_q ∥xy∥1≤∥x∥p∥y∥q
Cauchy–Schwarz inequality:令
p
=
q
=
2
p=q=2
p=q=2,于是有
∑
n
=
1
∞
∣
x
n
y
n
∣
≤
∑
n
=
1
∞
∣
x
n
∣
2
∑
n
=
1
∞
∣
y
n
∣
2
\sum_{n=1}^\infty |x_ny_n| \le \sqrt{\sum_{n=1}^\infty |x_n|^2} \sqrt{\sum_{n=1}^\infty |y_n|^2}
n=1∑∞∣xnyn∣≤n=1∑∞∣xn∣2n=1∑∞∣yn∣2
Minkowski’s inequality:令
p
≤
1
p\le 1
p≤1,如果
x
,
y
∈
l
p
x,y \in l^p
x,y∈lp,那么加和序列
x
+
y
=
(
x
n
+
y
n
)
∈
l
p
x+y = (x_n+y_n) \in l^p
x+y=(xn+yn)∈lp,并且
∥
x
+
y
∥
p
≤
∥
x
∥
p
+
∥
y
∥
p
\|x+y\|_p \le \|x\|_p + \|y\|_p
∥x+y∥p≤∥x∥p+∥y∥p
开集和闭集
令 ( M , d ) (M,d) (M,d)是度量空间, x 0 ∈ M x_0 \in M x0∈M, r ∈ R r \in R r∈R,定义:
- 开球(open ball): B ( x 0 , r ) = { x ∈ M : d ( x , x 0 ) < 0 } B(x_0,r) = \{x \in M:d(x,x_0)<0\} B(x0,r)={x∈M:d(x,x0)<0}
- 闭球(closed ball): B ˉ ( x 0 , r ) = { x ∈ M : d ( x , x 0 ) ≤ 0 } \bar B(x_0,r) = \{x \in M:d(x,x_0)\le0\} Bˉ(x0,r)={x∈M:d(x,x0)≤0}
- 球面(sphere): S ( x 0 , r ) = { x ∈ M : d ( x , x 0 ) = 0 } S(x_0,r) = \{x \in M:d(x,x_0)=0\} S(x0,r)={x∈M:d(x,x0)=0}
我们说子集 S ⊆ M S \subseteq M S⊆M是开的(open),如果对于任意的 x ∈ S x \in S x∈S,都存在一个 r > 0 r>0 r>0,使得 B ( x , r ) ⊆ S B(x,r) \subseteq S B(x,r)⊆S。注意,空集是开的。我们说子集 T ⊆ M T \subseteq M T⊆M是闭的(closed),如果他的补集 T c T^c Tc是开的。明显,开球是开集,闭球是闭集。
存在不开不闭的子集,比如 R R R中的 [ a , b ) , a < b [a,b),a<b [a,b),a<b。存在即开又闭的子集,比如 R R R上的空集 ∅ \empty ∅以及全空间 R R R。
令 X X X是非空集合,令 O O O是对 X X X子集的收集,叫做 X X X的拓扑(topology),如果它有以下性质:
- ∅ ∈ O \empty \in O ∅∈O, X ∈ O X \in O X∈O
- 如果 S , T ∈ O S,T \in O S,T∈O,那么 S ∩ T ∈ O S \cap T \in O S∩T∈O
- 如果 { S i : i ∈ O } \{S_i:i \in O\} {Si:i∈O}是 O O O的有限个子集,那么 ∪ i ∈ K S i ∈ O \cup_{i \in K} S_i \in O ∪i∈KSi∈O
我们将二元组 ( X , O ) (X,O) (X,O)叫做拓扑空间(topological space)
令 M M M是度量空间,那么对其中所有开集的收集 O O O是一个关于 M M M的拓扑,叫做由度量诱导(induced)的拓扑。
收敛
令度量空间
(
M
,
d
)
(M,d)
(M,d)里的序列
(
x
n
)
(x_n)
(xn)收敛(converges)于
x
∈
M
x \in M
x∈M,记做
(
x
n
)
→
x
(x_n) \to x
(xn)→x,如果满足
lim
n
→
∞
d
(
x
n
,
x
)
=
0
\lim_{n \to \infty} d(x_n,x) = 0
n→∞limd(xn,x)=0
或者说,
∀
ϵ
>
0
,
∃
N
>
0
\forall \epsilon>0,\,\, \exists N>0
∀ϵ>0,∃N>0,
n
>
N
⇒
x
n
∈
B
(
x
,
ϵ
)
n>N \Rightarrow x_n \in B(x,\epsilon)
n>N⇒xn∈B(x,ϵ)
我们将
x
x
x叫做
(
x
n
)
(x_n)
(xn)的极限(limit)
令 M M M是度量空间,子集 S ⊆ M S \subseteq M S⊆M是闭的 ⟺ \iff ⟺ S S S内的收敛的序列收敛于 S S S内的点,即 ( x n ) → x (x_n)\to x (xn)→x那么$ x \in S$
闭包
令 M M M是度量空间,子集 S ⊆ M S \subseteq M S⊆M的闭包(closure)是包含 S S S的最小闭集,记做 c l ( S ) cl(S) cl(S)。对于任意子集 S S S,闭包一定存在,它是所有包含 S S S的闭集的交集。
令 S ⊆ M S \subseteq M S⊆M是非空集合,一个元素 x ∈ M x \in M x∈M叫做极限点(limit point)或者聚点(accumulation point),如果以 x x x为中心的开球与 S S S的交集包含一个点 x ′ ≠ x x' \neq x x′=x,将 S S S的所有极限点的集合记做 l ( S ) l(S) l(S)
令 S S S是度量空间 M M M的非空子集,那么:
- x ∈ l ( S ) ⟺ ∃ ( x n ) ⊆ S , ∀ n , x n ≠ x , ( x n ) → x x \in l(S) \iff \exists (x_n) \subseteq S,\,\, \forall n,x_n \neq x,\,\, (x_n) \to x x∈l(S)⟺∃(xn)⊆S,∀n,xn=x,(xn)→x
- S S S是闭的 ⟺ l ( S ) ⊆ S \iff l(S) \subseteq S ⟺l(S)⊆S
- c l ( S ) = S ∪ l ( S ) cl(S) = S \cup l(S) cl(S)=S∪l(S)
- x ∈ c l ( S ) ⟺ ∃ ( x n ) ⊆ S , ( x n ) → x x \in cl(S) \iff \exists (x_n) \subseteq S,\,\,(x_n) \to x x∈cl(S)⟺∃(xn)⊆S,(xn)→x
稠密集
令 S S S是度量空间 M M M的子集,我们称它是在 M M M中稠密的(dense),如果 c l ( S ) = M cl(S) = M cl(S)=M,即稠密集的闭包是全空间。如果 M M M包含可数的稠密集,那么我们称它是可分的(separable)。
易知,若 S S S是 M M M的稠密集,那么 ∀ x ∈ M \forall x \in M ∀x∈M,任意半径的开球与 S S S相交于至少一个点,即 B ( x , r ) ∩ S ≠ ∅ B(x,r) \cap S \neq \empty B(x,r)∩S=∅
例子
任意度量空间 M M M都是其自身的稠密集,不是所有度量空间都包含可数的稠密集:
- R n R^n Rn是可分的,其中 Q n = ( Z × Z ) n Q^n = (Z \times Z)^n Qn=(Z×Z)n是可数的稠密集
- C n C^n Cn是可分的,其中 ( Q × Q ) n (Q \times Q)^n (Q×Q)n可数的稠密集
- 一个离散度量空间是可分的 ⟺ \iff ⟺它本身是可数的,因为它的稠密集只有本身
- 空间 l ∞ l^\infty l∞不可分。令 S = { ( x n ) : x i ∈ { 0 , 1 } , ∀ i } S=\{(x_n): x_i \in \{0,1\}, \forall i \} S={(xn):xi∈{0,1},∀i}是一个子集,明显它的基数为 2 ℵ 0 > ℵ 0 2^{\displaystyle \aleph _{0}} > \aleph_0 2ℵ0>ℵ0,并且若 x , y ∈ S , x ≠ y x,y \in S,\,\, x \neq y x,y∈S,x=y,那么 d ( x , y ) = 1 d(x,y)=1 d(x,y)=1。即, l ∞ l^\infty l∞中包含一个不可数的离散子集,从而不存在可数的稠密集。
- 空间 l p l^p lp可分。可以证明 S = { ( q 1 , ⋯ , q n , 0 , ⋯ ) : ∀ n > 0 , ∀ q i ∈ Q } S=\{(q_1,\cdots,q_n,0,\cdots): \forall n>0,\,\, \forall q_i \in Q\} S={(q1,⋯,qn,0,⋯):∀n>0,∀qi∈Q}是稠密集:由于 ∑ n = 1 ∞ ∣ x n ∣ p < ∞ \sum_{n=1}^\infty |x_n|^p < \infty ∑n=1∞∣xn∣p<∞,因此对于任意的 ϵ \epsilon ϵ,存在 N > 0 N>0 N>0,使得 ∑ n = N + 1 ∞ ∣ x n ∣ p < ϵ / 2 \sum_{n=N+1}^\infty |x_n|^p < \epsilon/2 ∑n=N+1∞∣xn∣p<ϵ/2。同时 Q n Q^n Qn是 R n R^n Rn的稠密集,从而存在 s = ( q 1 , ⋯ , q N , 0 , ⋯ ) s=(q_1,\cdots,q_N,0,\cdots) s=(q1,⋯,qN,0,⋯),使得 ∑ n = 1 N ∣ x n − q n ∣ p < ϵ / 2 \sum_{n=1}^N |x_n-q_n|^p < \epsilon/2 ∑n=1N∣xn−qn∣p<ϵ/2。于是, d ( x , s ) p = ϵ / 2 + ϵ / 2 = ϵ d(x,s)^p = \epsilon/2 + \epsilon/2 = \epsilon d(x,s)p=ϵ/2+ϵ/2=ϵ,即 S S S是稠密集。
连续
令
(
M
,
d
)
,
(
M
′
,
d
′
)
(M,d),(M',d')
(M,d),(M′,d′)是两个度量空间,我们说函数
f
:
M
→
M
′
f:M \to M'
f:M→M′在点
x
0
∈
M
x_0 \in M
x0∈M上是连续的(continuous),如果对于任意的
ϵ
>
0
\epsilon >0
ϵ>0,都存在
δ
>
0
\delta>0
δ>0使得
d
(
x
,
x
0
)
<
δ
⇒
d
′
(
f
(
x
)
,
f
(
x
0
)
)
<
ϵ
d(x,x_0) < \delta \Rightarrow d'(f(x),f(x_0))<\epsilon
d(x,x0)<δ⇒d′(f(x),f(x0))<ϵ
或者说,
f
(
B
(
x
0
,
δ
)
)
⊆
B
(
f
(
x
0
)
,
ϵ
)
f(B(x_0,\delta)) \subseteq B(f(x_0),\epsilon)
f(B(x0,δ))⊆B(f(x0),ϵ)
如果函数
f
f
f在任意的
x
0
∈
M
x_0 \in M
x0∈M都连续,我们说
f
f
f是连续的。
收敛与连续的关系:函数 f : M → M ′ f:M \to M' f:M→M′是连续的 ⟺ ( x n ) → x 0 ∈ M ⇒ ( f ( x n ) ) → f ( x 0 ) ∈ M ′ \iff (x_n)\to x_0 \in M \Rightarrow (f(x_n)) \to f(x_0) \in M' ⟺(xn)→x0∈M⇒(f(xn))→f(x0)∈M′
令 ( M , d ) (M,d) (M,d)是度量空间,如果 ( x n ) → x , ( y n ) → y (x_n)\to x,(y_n)\to y (xn)→x,(yn)→y,那么 d ( x n , y n ) → d ( x , y ) d(x_n,y_n)\to d(x,y) d(xn,yn)→d(x,y),即度量是连续函数。
完备性
令
(
x
n
)
(x_n)
(xn)是度量空间
M
M
M里的序列,称它为柯西序列(Cauchy sequence),如果对于任意的
ϵ
>
0
\epsilon>0
ϵ>0都存在
N
>
0
N>0
N>0,使得
n
,
m
>
N
⇒
d
(
x
n
,
x
m
)
<
ϵ
n,m>N \Rightarrow d(x_n,x_m) < \epsilon
n,m>N⇒d(xn,xm)<ϵ
令
(
M
,
d
)
(M,d)
(M,d)是度量空间,称
M
M
M是完备的(complete),如果
M
M
M里任意的柯西序列都在
M
M
M中收敛。称子集
S
⊆
M
S \subseteq M
S⊆M是完备的
⟺
\iff
⟺任意的柯西序列
(
s
n
)
∈
S
(s_n) \in S
(sn)∈S都收敛于
S
S
S中元素。
令 ( M , d ) (M,d) (M,d)是度量空间,
- M M M的任意完备子空间都是闭的
- 如果 M M M是完备的,那么子空间 S S S是完备的 ⟺ S \iff S ⟺S是闭的
例子
-
实数集 R R R和复数集 C C C都是完备的
-
欧几里得空间(Euclidean space) R n R^n Rn是内积空间,其标准内积(standard inner product)定义为
< ( r 1 , ⋯ , r n ) , ( s 1 , ⋯ , s n ) > = r 1 s 1 + ⋯ + r n s n <(r_1,\cdots,r_n),\,\, (s_1,\cdots,s_n)> = r_1s_1+\cdots+r_ns_n <(r1,⋯,rn),(s1,⋯,sn)>=r1s1+⋯+rnsn
由内积诱导的度量为 d ( x , y ) = < x − y , x − y > d(x,y) = \sqrt{<x-y,x-y>} d(x,y)=<x−y,x−y>, ( R n , d ) (R^n,d) (Rn,d)是完备的 -
酉空间(Unitary space) C n C^n Cn是内积空间,其标准内积(standard inner product)定义为
< ( r 1 , ⋯ , r n ) , ( s 1 , ⋯ , s n ) > = r 1 s ˉ 1 + ⋯ + r n s ˉ n <(r_1,\cdots,r_n),\,\, (s_1,\cdots,s_n)> = r_1\bar s_1+\cdots+r_n\bar s_n <(r1,⋯,rn),(s1,⋯,sn)>=r1sˉ1+⋯+rnsˉn
由内积诱导的度量为 d ( x , y ) = < x − y , x − y > d(x,y) = \sqrt{<x-y,x-y>} d(x,y)=<x−y,x−y>, ( C n , d ) (C^n,d) (Cn,d)它是完备的 -
集合 C [ a , b ] C[a,b] C[a,b]由所有定义在区间 [ a , b ] [a,b] [a,b]上的连续复值函数组成,使用上确界度量 d ( f , g ) = sup x ∈ [ a , b ] ∣ f ( x ) − g ( x ) ∣ d(f,g)=\underset{x \in [a,b]}{\sup} |f(x)-g(x)| d(f,g)=x∈[a,b]sup∣f(x)−g(x)∣,它是完备的
-
度量空间 l ∞ l^\infty l∞和 l p l^p lp都是完备的
等距映射
令
(
M
,
d
)
,
(
M
′
,
d
′
)
(M,d),(M',d')
(M,d),(M′,d′)是两个度量空间,函数
f
:
M
→
M
′
f:M \to M'
f:M→M′叫做等距映射(isometry),如果对于任意的
x
,
y
∈
M
x,y \in M
x,y∈M都有
d
′
(
f
(
x
)
,
f
(
y
)
)
=
d
(
x
,
y
)
d'(f(x),f(y)) = d(x,y)
d′(f(x),f(y))=d(x,y)
若
f
f
f是双射,那么我们说
M
,
M
′
M,M'
M,M′是等距同构(isometric),记做
M
≈
M
′
M \approx M'
M≈M′
一个等距映射 f f f,有如下性质
- f f f是单射,因为 f ( x ) = f ( y ) ⟺ d ′ ( f ( x ) , f ( y ) ) = 0 ⟺ x = y f(x)=f(y) \iff d'(f(x),f(y))=0 \iff x=y f(x)=f(y)⟺d′(f(x),f(y))=0⟺x=y
- f f f是连续的,因为如果 ( x n ) → x ∈ M (x_n) \to x \in M (xn)→x∈M,那么 d ’ ( f ( x n ) , f ( x ) ) = d ( x n , x ) → 0 d’(f(x_n),f(x)) = d(x_n,x) \to 0 d’(f(xn),f(x))=d(xn,x)→0,即 ( f ( x n ) ) → f ( x ) (f(x_n)) \to f(x) (f(xn))→f(x)
- f − 1 : f ( M ) → M f^{-1}:f(M) \to M f−1:f(M)→M也是等距映射
完备化
令 ( M , d ) (M,d) (M,d)是任意的度量空间,总是存在一个完备的度量空间 ( M ′ , d ′ ) (M',d') (M′,d′)以及一个等距映射 τ : M → τ M ⊆ M ’ \tau: M \to \tau M \subseteq M’ τ:M→τM⊆M’,使得 τ M \tau M τM是一个稠密集。这里 ( M ′ , d ′ ) (M',d') (M′,d′)叫做 ( M , d ) (M,d) (M,d)的一个完备化(completion)。另外,如果要求 τ \tau τ是双射(即 ∣ M ∣ = ∣ τ M ∣ |M|=|\tau M| ∣M∣=∣τM∣),那么 ( M ′ , d ′ ) (M',d') (M′,d′)是唯一的。
1. M M M的柯西序列集合
令 C S ( M ) CS(M) CS(M)包含所有的 M M M里的柯西序列。
若
f
,
g
∈
C
S
(
M
)
f,g \in CS(M)
f,g∈CS(M),那么
d
(
f
(
n
)
,
f
(
m
)
)
→
0
d(f(n),f(m)) \to 0
d(f(n),f(m))→0且
d
(
g
(
n
)
,
g
(
m
)
)
→
0
d(g(n),g(m)) \to 0
d(g(n),g(m))→0,用两次三角不等式得到
∣
d
(
f
(
n
)
,
g
(
n
)
)
−
d
(
f
(
m
)
,
g
(
m
)
)
∣
≤
d
(
f
(
n
)
,
f
(
m
)
)
+
d
(
g
(
n
)
,
g
(
m
)
)
→
0
|d(f(n),g(n)) - d(f(m),g(m))| \le d(f(n),f(m)) + d(g(n),g(m)) \to 0
∣d(f(n),g(n))−d(f(m),g(m))∣≤d(f(n),f(m))+d(g(n),g(m))→0
即序列
(
d
(
f
(
n
)
,
g
(
n
)
)
)
(d(f(n),g(n)))
(d(f(n),g(n)))是实数集上的柯西序列,从而极限存在且有限:
lim
n
→
∞
d
(
f
(
n
)
,
g
(
n
)
)
<
∞
\lim_{n \to \infty} d(f(n),g(n)) < \infty
n→∞limd(f(n),g(n))<∞
在
C
S
(
M
)
CS(M)
CS(M)上定义:
d
′
(
f
,
g
)
:
=
lim
n
→
∞
d
(
f
(
n
)
,
g
(
n
)
)
d'(f,g) := \lim_{n \to \infty} d(f(n),g(n))
d′(f,g):=n→∞limd(f(n),g(n))
但这不是度量,因为对于
f
≠
g
f \neq g
f=g,依然可能有
d
′
(
f
,
g
)
=
0
d'(f,g)=0
d′(f,g)=0
2. 等价类
就如同利用素理想收集零因子那样使得商环成为整环,我们也利用等价类收集不满足度量性质的点,从而做出一个度量。
定义柯西序列的等价关系: f ∼ g ⟺ d ′ ( f , g ) = 0 f \sim g \iff d'(f,g)=0 f∼g⟺d′(f,g)=0
令
C
S
(
M
)
‾
\overline{CS(M)}
CS(M)包含
C
S
(
M
)
CS(M)
CS(M)中所有的柯西序列等价类,对于
f
ˉ
,
g
ˉ
∈
C
S
(
M
)
‾
\bar f,\bar g \in \overline{CS(M)}
fˉ,gˉ∈CS(M),定义函数
d
’
(
f
ˉ
,
g
ˉ
)
:
=
d
′
(
f
,
g
)
d’(\bar f,\bar g) := d'(f,g)
d’(fˉ,gˉ):=d′(f,g)
其中
f
∈
f
ˉ
,
g
∈
g
ˉ
f \in \bar f,g \in \bar g
f∈fˉ,g∈gˉ
可以验证集合
C
S
(
M
)
‾
\overline{CS(M)}
CS(M)上的
d
’
d’
d’是良定义的(well-define),即
f
’
∼
f
,
g
′
∼
g
⇒
d
′
(
f
′
,
g
′
)
=
d
′
(
f
,
g
)
f’ \sim f,g' \sim g \Rightarrow d'(f',g')=d'(f,g)
f’∼f,g′∼g⇒d′(f′,g′)=d′(f,g)
另外,可以验证集合
C
S
(
M
)
‾
\overline{CS(M)}
CS(M)上的
d
′
d'
d′符合度量需要的三条性质。因此,
(
C
S
(
M
)
‾
,
d
′
)
(\overline{CS(M)},d')
(CS(M),d′)是一个度量空间,我们简记
M
′
=
C
S
(
M
)
‾
M'=\overline{CS(M)}
M′=CS(M)
3. 将 ( M , d ) (M,d) (M,d)嵌入 ( M ′ , d ′ ) (M',d') (M′,d′)
对于一个 x ∈ M x \in M x∈M,令 [ x ] [x] [x]是一个常柯西序列,即 [ x ] ( n ) = x , ∀ n [x](n) = x,\forall n [x](n)=x,∀n
定义映射
τ
:
M
→
M
′
x
↦
[
x
]
‾
\begin{aligned} \tau: M &\to M'\\ x &\mapsto \overline{[x]} \end{aligned}
τ:Mx→M′↦[x]
由于
d
’
(
τ
x
,
τ
y
)
=
d
′
(
[
x
]
‾
,
[
y
]
‾
)
=
d
′
(
[
x
]
,
[
y
]
)
=
d
(
x
,
y
)
d’(\tau x,\tau y) = d'(\overline{[x]},\overline{[y]})=d'([x],[y])=d(x,y)
d’(τx,τy)=d′([x],[y])=d′([x],[y])=d(x,y),因此它是等距映射。
对于任意的
f
ˉ
∈
M
′
\bar f \in M'
fˉ∈M′,
f
∈
f
ˉ
f \in \bar f
f∈fˉ是柯西序列,从而对于任意的
ϵ
>
0
\epsilon>0
ϵ>0,都存在
N
>
0
N>0
N>0,使得
n
,
m
≥
N
⇒
d
(
f
(
n
)
,
f
(
m
)
)
<
ϵ
n,m \ge N \Rightarrow d(f(n),f(m)) < \epsilon
n,m≥N⇒d(f(n),f(m))<ϵ,故而有
d
′
(
f
ˉ
,
[
f
(
N
)
]
‾
)
=
d
′
(
f
,
[
f
[
N
]
]
)
≤
ϵ
d'(\bar f,\,\, \overline{[f(N)]}) = d'(f,[f[N]]) \le \epsilon
d′(fˉ,[f(N)])=d′(f,[f[N]])≤ϵ
也就是说总存在常柯西序列
[
f
[
N
]
]
[f[N]]
[f[N]],它所在的等价类距离
f
ˉ
\bar f
fˉ任意近,因此
τ
M
\tau M
τM是度量空间
M
′
M'
M′的稠密集。
4. ( M ′ , d ′ ) (M',d') (M′,d′)是完备的
若令 [ f ˉ k ] [\bar f_k] [fˉk]是 M ′ M' M′里的一个任意一个柯西序列,为了证明 M ′ M' M′是完备的,我们需要找到一个 M ′ M' M′内的元素 g ˉ \bar g gˉ,使得 d ′ ( f ˉ k , g ˉ ) → 0 d'(\bar f_k,\bar g) \to 0 d′(fˉk,gˉ)→0
由于
τ
M
\tau M
τM是
M
′
M'
M′的稠密集,因此存在
M
M
M里的常柯西序列
[
c
k
]
[c_k]
[ck],使得
d
’
(
f
ˉ
k
,
[
c
k
]
‾
)
<
1
/
k
d’(\bar f_k,\overline{[c_k]}) < 1/k
d’(fˉk,[ck])<1/k
我们令
g
(
k
)
=
c
k
g(k)=c_k
g(k)=ck,那么
g
g
g是
M
M
M里的柯西序列:
d
(
g
(
k
)
,
g
(
j
)
)
=
d
′
(
[
c
k
]
‾
,
[
c
j
]
‾
)
≤
d
′
(
[
c
k
]
‾
,
f
ˉ
k
)
+
d
′
(
f
ˉ
k
,
f
ˉ
j
)
+
d
′
(
f
ˉ
j
,
[
c
j
]
‾
)
≤
1
/
k
+
d
′
(
f
ˉ
k
,
f
ˉ
j
)
+
1
/
j
→
0
\begin{aligned} d(g(k),g(j)) &= d'(\overline{[c_k]},\overline{[c_j]})\\ &\le d'(\overline{[c_k]},\bar f_k) + d'(\bar f_k,\bar f_j) + d'(\bar f_j,\overline{[c_j]})\\ &\le 1/k + d'(\bar f_k,\bar f_j) + 1/j \\ &\to 0\\ \end{aligned}
d(g(k),g(j))=d′([ck],[cj])≤d′([ck],fˉk)+d′(fˉk,fˉj)+d′(fˉj,[cj])≤1/k+d′(fˉk,fˉj)+1/j→0
明显的,
d
′
(
f
ˉ
k
,
g
ˉ
)
≤
d
′
(
f
ˉ
k
,
[
c
k
]
‾
)
+
d
′
(
g
ˉ
,
[
c
k
]
‾
)
<
1
k
+
d
′
(
g
,
[
c
k
]
)
=
1
k
+
lim
n
→
∞
d
(
c
n
,
c
k
)
\begin{aligned} d'(\bar f_k,\bar g) &\le d'(\bar f_k,\overline{[c_k]}) + d'(\bar g,\overline{[c_k]})\\ &< \frac{1}{k} + d'(g,[c_k])\\ &= \frac{1}{k} + \lim_{n \to \infty} d(c_n,c_k)\\ \end{aligned}
d′(fˉk,gˉ)≤d′(fˉk,[ck])+d′(gˉ,[ck])<k1+d′(g,[ck])=k1+n→∞limd(cn,ck)
由于
g
=
(
c
k
)
g=(c_k)
g=(ck)是柯西序列,因此对于任意的
ϵ
>
0
\epsilon>0
ϵ>0总存在
N
>
0
N>0
N>0
k
>
N
⇒
lim
n
→
∞
d
(
g
(
n
)
,
g
(
k
)
)
≤
ϵ
k > N \Rightarrow \lim_{n \to \infty} d(g(n), g(k)) \le \epsilon
k>N⇒n→∞limd(g(n),g(k))≤ϵ
随着
k
→
∞
k \to \infty
k→∞,我们有
d
′
(
f
ˉ
k
,
g
ˉ
)
<
1
/
k
+
ϵ
→
0
d'(\bar f_k,\bar g) < 1/k + \epsilon \to 0
d′(fˉk,gˉ)<1/k+ϵ→0,即
f
ˉ
k
→
g
ˉ
\bar f_k\to \bar g
fˉk→gˉ
因此, M ′ M' M′内任意的柯西序列 [ f ˉ k ] [\bar f_k] [fˉk],都存在 M ′ M' M′内部的一个元素 g ˉ \bar g gˉ,使得序列收敛于它,从而 M ′ M' M′是完备的。
5. 唯一性
假设 ( M ′ , d ′ ) , ( M ′ ′ , d ′ ′ ) (M',d'),(M'',d'') (M′,d′),(M′′,d′′)都是 ( M , d ) (M,d) (M,d)的完备化,且 τ : M → τ M ⊆ M ′ \tau:M \to \tau M \subseteq M' τ:M→τM⊆M′和 σ : M → σ M ⊆ M ′ ′ \sigma:M \to \sigma M\subseteq M'' σ:M→σM⊆M′′都是可逆的等距映射。
令 ρ = σ τ − 1 \rho = \sigma \tau^{-1} ρ=στ−1是从 τ M \tau M τM到 σ M \sigma M σM的可逆等距映射,我们证明 ρ \rho ρ可以扩展为从 M ′ M' M′到 M ′ ′ M'' M′′的可逆等距映射:
- 由于 τ M \tau M τM是 M ′ M' M′的稠密集,因此任意的元素 x ′ ∈ M ′ x' \in M' x′∈M′,都存在 τ M \tau M τM里的柯西序列 ( a n ) → x (a_n) \to x (an)→x
- 由于 ρ \rho ρ是等距映射,从而 ( ρ ( a n ) ) (\rho(a_n)) (ρ(an))是 σ M \sigma M σM里的柯西序列,那么 ( ρ ( a n ) ) → y ∈ M ′ ′ (\rho(a_n)) \to y \in M'' (ρ(an))→y∈M′′
我们定义
∀
x
∈
M
′
,
ρ
′
(
x
)
=
y
∈
M
′
′
\forall x \in M',\rho'(x) = y \in M''
∀x∈M′,ρ′(x)=y∈M′′,可以证明它是良定义的,它是
ρ
\rho
ρ的扩展,它是等距映射,它是满射。从而
ρ
′
\rho'
ρ′是一个可逆的等距映射,最终证明了
M
′
≈
M
′
′
M' \approx M''
M′≈M′′
希尔伯特空间
令 V V V是域 F = R o r C F = \mathbb R\,\, or\,\, \mathbb C F=RorC上的向量空间,内积(inner product)是一个函数 < ⋅ , ⋅ > : V × V → F <\cdot,\cdot>: V \times V \to F <⋅,⋅>:V×V→F,它满足以下性质
- 正定性(positive definiteness): ∀ v , < v , v > ≥ 0 \forall v,\,<v,v> \ge 0 ∀v,<v,v>≥0,且 < v , v > = 0 ⟺ v = 0 <v,v>=0 \iff v=0 <v,v>=0⟺v=0
- 如果 F = R F=R F=R,对称性(symmetry): < v , u > = < u , v > <v,u> = <u,v> <v,u>=<u,v>
- 如果 F = C F=C F=C,共轭对称性(conjugate symmetry): < v , u > = < u , v > ‾ <v,u> = \overline{<u,v>} <v,u>=<u,v>
- 第一分量的线性(Linearity in the first coordinate): < r u + s v , w > = r < u , w > + s < v , w > <ru+sv,w> = r<u,w> + s<v,w> <ru+sv,w>=r<u,w>+s<v,w>
我们将 ( V , < ⋅ , ⋅ > ) (V,<\cdot,\cdot>) (V,<⋅,⋅>)叫做内积空间(real/complex inner product space),容易验证,
- 对于实内积空间,内积是双线性的(bilinear): < w , r u + s v > = r < w , u > + s < w , v > <w,ru+sv> = r<w,u> + s<w,v> <w,ru+sv>=r<w,u>+s<w,v>
- 对于复内积空间,内积是共轭线性的(conjugate linear): < w , r u + s v > = r ˉ < w , u > + s ˉ < w , v > <w,ru+sv> = \bar r<w,u> + \bar s<w,v> <w,ru+sv>=rˉ<w,u>+sˉ<w,v>
定义由内积诱导的范数(norm)为
∥
v
∥
=
<
v
,
v
>
\|v\| = \sqrt{<v,v>}
∥v∥=<v,v>
我们定义由内积诱导的度量为
d
(
u
,
v
)
=
∥
u
−
v
∥
d(u,v) = \|u-v\|
d(u,v)=∥u−v∥
容易验证
d
d
d是度量,从而任意的内积空间
V
V
V都是度量空间,且内积是连续的
- ( x n ) → x , ( y n ) → y ⇒ < x n , y n > → < x , y > (x_n) \to x,(y_n) \to y \Rightarrow <x_n,y_n> \to <x,y> (xn)→x,(yn)→y⇒<xn,yn>→<x,y>
- ( x n ) → x ⇒ ∥ x n ∥ → ∥ x ∥ (x_n) \to x \Rightarrow \|x_n\| \to \|x\| (xn)→x⇒∥xn∥→∥x∥
内积空间之间的等距映射 τ \tau τ是保持内积的, < τ u , τ v > = < u , v > <\tau u,\tau v> = <u,v> <τu,τv>=<u,v>
希尔伯特空间(Hilbert space):一个完备的内积空间,它的测度由内积诱导。
类似的,任意内积空间 V V V都可以完备化得到一个Hilbert空间 H H H,等距映射为 τ : V → H \tau:V \to H τ:V→H,且 τ V \tau V τV是 H H H的稠密集。
性质:
- 内积空间的完备子空间都是闭的
- Hilbert空间的子空间,它是Hilbert空间 ⟺ \iff ⟺它是闭的
- 内积空间的有限维子空间都是完备的和闭的