DeepLearning 中的 RNN 与 BRNN(双向RNN)

RNN

下图为 RNN 隐藏层单元的可视化呈现:

BRNN

下图,紫色表示正向连接,绿色表示反向连接,通过下图箭头连接,这个网络就构成了一个无环图。如图,给定一个输入序列 X<1>--X<4>,这个序列首先计算前向的a<1>, 然后计算a<2>,接着a<3>, a<4>;而反向序列则是从a<4>开始,计算a<3>,注意这里是前向传播而不是反向传播。图中的前向传播,一部分计算是从左到右,一部分是从右到左。

计算完了a<3>,可以用这些激活值去计算反向的 a<2>,然后是反向的 a<1>。把所有这些激活值都计算完了,就可以计算预测结果了,这其中涉及到一个激活函数 y<t>,作用于  W_y + t 时刻的前向激活值a<t> + 反向激活值a<t>。

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值