门控循环单元——GRU

      GRU 改变了RNN 的隐藏层,使其可以更好的捕捉深层连接,并改善了梯度消失问题。 GRU可以更好的捕捉非常长范围的依赖,让RNN更加有效。


  • RNN

下图为 RNN 隐藏层单元的可视化呈现,我们将使用相似的图来讲解 GRU 。


  •  GRU

        下图左上角的小图可以更好的解释GRU。

        给定一个句子,如下图所示。当我们从左向右读这个句子的时候,GRU 单元将会有个新的变量 C ,代表细胞,即记忆细胞。记忆细胞的作用是提供了记忆的能力,比如说,对于一只猫是单数还是复数,当他看到之后的句子时仍能够判断句子的主语是单数还是复数。于是在时间 t 处记忆细胞有关于 t 的值 C<t>,GRU实际上是输出了 a<t> 的激活值,于是我们想要使用不同的符号 c 和 a 来表示记忆细胞的值和输出的激活值,即使他们是一样的,但当之后谈到 LSTM 的时候这两个代表两个不同的值。 在每个时间步,我们将用一个候选重写记忆细胞  即C~<t>表达式如下,所以候选值替代了 C<t> 的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值