matlab中eeglab中的MST微状态分析(二)

脑电微状态(EEG microstates)是大脑在静息状态下,通过多通道EEG记录的电活动的一种表现形式。它们被定义为在短时间内头皮电位场配置保持半稳定状态的连续短暂时期,这表明大规模网络节点之间的活动具有准同时性。微状态分析是一种研究方法,它考虑了所有电极记录的信号,以创建一个功能状态的全局表示,能够评估与多种神经精神障碍相关的大规模脑网络的功能。

脑电微状态的分析可以揭示大脑在静息状态下的时空动态,以及这些动态如何与认知和精神障碍相关联。微状态通常持续80-100毫秒,并且可以被视为大脑功能状态的快速切换。这些状态的序列可能与意识状态有关,并且它们的发生和时间动态可能决定了心理状态的质量。

微状态分析的步骤通常包括:
1. 数据预处理:对采集到的EEG数据进行清洗,包括滤波、去噪等;
2. 计算全局场功率(GFP):GFP是所有电极值的平均值的平方根,可以作为事件或大脑活动变化的响应强度的参考独立度量;
3. 微状态分割:将EEG数据分割成一系列准稳态的微状态;
4. 微状态聚类:使用如k-means聚类算法对微状态进行分类,以识别不同微状态类型;
5. 微状态分析:分析微状态的分布、持续时间、频率等特征,以及它们在不同条件下的变化。

关于MST工具包中,步骤主要涉及:
1. 数据质量检查 :检查数据集中可能存在的伪迹;
2. 识别个体微状态图谱 :应用聚类分析个体预处理后的EEG记录的时间序列电位场图;使用修正过的k-means算法,允许极性反转;
3. 平均微状态图谱:对个体微状态图谱进行第二层聚类,以获得组平均或条件平均微状态图谱;
4. 排序微状态图谱:根据组平均或条件平均微状态图谱的分配关系,对个体微状态图谱进行排序;使用比较功能评估不同聚类解决方案之间的类别的拓扑相似性;
5. 异常值检测:检测个体EEG微状态图谱中的异常值;
6. 回溯和量化微状态动态:将原始EEG数据重新表达为微状态类别的序列(回溯);提取这些识别出的微状态特征,如平均持续时间、发生频率等;
7. 获取微状态激活时间序列:可查看每个分类的持续时间;
8. 使用Ragu进行TANOVA分析:导出个体微状态图谱到Ragu中,进行拓扑方法分析;
在这里插入图片描述
准备工作:
1.工具包加载:

打开eeglab,File -> Manage EEGLAB extensions,点击下载就可以;
在这里插入图片描述
2.加载数据,如下载的微状态示例数据(见一中介绍).set格式:File ->Load existing dataset,多选后点击打开;
在这里插入图片描述

微状态分析:

  1. 数据质量检查 :Tools -> MICROSTATELAB -> Data quality check ,
    在这里插入图片描述
    选择多个,设置分类的个数,默认为7,点击OK
    在这里插入图片描述
    查看数据,可以选择Auto select,默认阈值为0.04,(这里标记排除和保留,指示显示,数据不改变,可以将不好的数据,在次进行预处理,再次查看,或者删除次数据)
    在这里插入图片描述
  2. 识别个体微状态图谱 :Tools -> MICROSTATELAB -> Identify microstate maps per dataset , 点击OK
    主要是分类个数,默认是最小4,最大7,可以进行更改;如果勾选最后,会画出每个被试的分类图形;
    在这里插入图片描述
  3. 平均和排序微状态图谱:Tools -> MICROSTATELAB -> Identify mean microstate maps , 点击OK
    平均三次:对EC平均,对EO平均,最后大平均;
    在这里插入图片描述
    对另一组数据也进行平均:Tools -> MICROSTATELAB -> Identify mean microstate maps , 选择Means maps across datasets
    在这里插入图片描述
    在这里插入图片描述
    最后进行大平均:Tools -> MICROSTATELAB -> Identify mean microstate maps , 选择Grand means maps across means ,

在这里插入图片描述

画图显示:Plot -> microstate maps, 按着ctrl键,可进行多选数据
在这里插入图片描述
这里选择了4和5,默认是所有;
在这里插入图片描述

红框可选择想要看的数据:在这里插入图片描述4. 排序微状态图谱:Tools -> MICROSTATELAB ->Edit & sort microstate maps , 点击OK
选择你要排序的数据,
在这里插入图片描述
默认的是4,5,6,7类,如果要做比较的话,需要都进行排序
在这里插入图片描述
选择类别,点击Sort,需要全部排序:
在这里插入图片描述
可以查看信息Info和比较Compare,比较中可以查看

在这里插入图片描述点击保存save,会对所有的排序在这里插入图片描述
5. 异常值检测:Tools -> MICROSTATELAB -> Outliner detection , 选择类别,如A;设置阈值,默认为0.05;选择Auto select,如果没有检测到,点击确定,如果检测到,可以选择保留或排除;这里选择排除,就会删除次数据;
在这里插入图片描述
6. 回溯和量化微状态动态:Tools -> MICROSTATELAB -> Backfit microstate maps to EEG,点击Ok
在这里插入图片描述
量化计算指标:Tools -> MICROSTATELAB -> Export temporal parameters,点击OK
只能选择一类,如果感兴趣可以多导出几次;

在这里插入图片描述
每列都是不同的指标,根据所需选择响应的指标进行后续分析:(到这里就可以结束了)
在这里插入图片描述

下面还可以进行微状态持续时间查看:
Tools -> MICROSTATELAB -> Obtain microstate activation time series(optional),点击OK;

在这里插入图片描述
两个保存数据结构体的不一致,可以选择Alleeg overwrites eeg:
在这里插入图片描述
然后,Datasets工具栏中选择一个数据,不然不让画图:默认的是上步骤选择几个数据就会有几个Dataset被选中,如选择的s0_1EC和s0_1EO,这里就有两个数据库被选择16和17;
在这里插入图片描述
勾选一个,然后选择Plot -> Plot temporal dynamics, 点击OK
在这里插入图片描述
在这里插入图片描述
选择Plot -> Plot temporal parameters, 点击OK
在这里插入图片描述
最后方差分析,这里不做记录了,感兴趣的可查看之前提到的文章,里面有具体的介绍。对于具体分析,还需要多看看文章,设置各参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值