MICROSTATELAB:用于静息状态微状态分析的EEGLAB工具箱

微状态分析是一种多变量方法,它允许研究人员探索人脑活动的EEG记录中大型神经网络的时空动态。为了满足对这种方法日益增长的兴趣,我们提供了第一个开源EEGLAB工具箱的全面更新版本,用于标准化地识别、可视化和量化静息状态EEG数据中的微状态。该工具箱允许科学家:

      (i) 使用地形聚类方法识别个体、平均和总体微状态图;

     (ii) 检查数据质量并检测异常图;

     (iii) 根据已发布的图对个体、平均和总体微状态图进行可视化、排序和标记;

     (iv) 比较组和总体微状态图的地形相似性并量化共享的方差;

     (v) 获取个体EEG中微状态类的时态动态;

     (vi) 导出这些微状态的时态动态的量化结果以进行统计测试;

     (vii) 使用地形方差分析(TANOVA)测试组和条件之间的地形差异。在这里,我们使用一个包含34个公开可用的静息状态EEG记录的样本数据集,逐步介绍这个工具箱。本文的目标是:a) 为科学界提供一个标准化的、开源的静息状态微状态分析工具箱,b) 允许研究者通过遵循逐步教程使用微状态分析的最佳实践,c) 通过提供以前不可用的功能和关于微状态分析中所需的关键决策的建议,提高微状态研究的方法论标准。本文发表在researchsquare网站。(可添加微信号siyingyxf18983979082获取原文,另思影提供免费文献下载服务,如需要也可添加此微信号入群,原文也会在群里发布)

1.引言 

     大脑活动天生是自发的和自组织的。大脑内的大部分神经活动是内部的,独立于感觉输入或运动输出。同样,我们主要能够维持一连串的心智表征,不仅是因为,而且甚至是反对持续的感觉刺激。考虑到这种自组织的大脑活动也构成了心理状态的物质基础,因此可以使用对自发大脑活动的研究来研究健康和疾病中的自组织心理状态,获得对生理状态变化的生物学理解,并最终获得在适当的地方用行为或药物治疗进行干预的能力。使用微状态框架对自发EEG进行分析就是这样一种方法。EEG微状态分析假设自发大脑活动主要是在亚秒时间段内组织的大规模的同相和反相振荡状态(Michel & Koenig, 2018)的皮层兴奋性,这些状态定义了大脑的整体信息整合模式。此外,微状态分析通常假设这样的状态只有一小部分,但相当普遍和典型,这些状态可以被识别为EEG中的准稳定头皮场地形的时期。微状态分析从自发EEG数据中容易观察到的稳定场配置的短暂时期(40-120ms)与周期性极性反转(Lehmann, 1990; Lehmann et al., 1987)的事实中得到了这些假设的基本支持。从物理学的角度看,大规模大脑源的同相和反相振荡是自发EEG场同步极性反转现象的最合理的解释(Michel & Koenig, 2018)。也许最相关的是,有越来越多的实证研究显示EEG微状态的变化与心理状态的变化之间存在系统的关联(参见Khanna et al., 2015; Michel & Koenig, 2018的综述)。

       微状态分析是关于识别和量化一组有限的全局功能性大脑状态,这些状态由进行中的EEG的一个共同(尽管周期性反转)的头皮场定义,这个头皮场通过活跃源的体积传导被归因于这些大脑状态之一。因此,微状态分析通常涉及识别主要的EEG头皮场类别(微状态图),这些类别可能代表在个体记录期间存在的主要的全局功能性大脑状态集合。一旦这些个体微状态图被识别,它们必须在受试者之间以类似的方式进行排序,以提取代表实验组和条件中可观察到的大脑功能状态的共同集合的一组平均微状态图。然后,可以使用这组平均微状态图通过查询与其他研究中空间上相似的图相关的实证发现来推断功能意义。此外,平均模板图可以与个体EEG进行竞争性拟合,从而产生一系列将EEG时间分配给这些微状态类的任务。然后,可以将个体微状态定义为分配给同一类的连续时间段,并用于提取给定EEG数据中的EEG微状态的个体量化器,如它们的平均持续时间、出现频率和作为微状态类的函数的百分比时间覆盖。然后可以对提取的特征进行统计测试,以寻找组和/或条件之间的差异,以解决可能的特定全局大脑功能状态的招募变化。

      对微状态的分析方法存在相当大的变异性。这反映了有限的标准化和跨研究比较数据集的挑战。为了解决分析上的挑战,我们在这里介绍了第一个用于静息状态微状态分析的EEGLAB工具箱的全面更新版本,即MICROSTATELAB。这个工具箱为神经科学社区提供了一个经过策划、标准化和验证的开放访问软件流程,用于识别、可视化和量化EEG微状态。工具箱的开发有几个目标:1) 使来自不同领域的研究者,即使没有先前的EEGLAB或MATLAB经验,也能够通过遵循逐步教程进行微状态分析;2) 通过提供和讨论进行准确微状态分析所必需的关键决策的建议,提高微状态研究的当前方法论标准。

      本文分为四个部分。首先,我们提供了微状态分析的概述。其次,我们提供了关于分析各个步骤中的关键决策的建议。第三,我们使用图形用户界面(GUI)以及使用示例脚本进行批处理提供了如何使用示例数据集使用工具箱的逐步教程。最后,我们讨论了微状态方法的优点和缺点以及微状态研究的未来目标。

2.微状态分析概述 

      以下部分简要概述了微状态分析的典型步骤及其标准顺序(图1)。随后的部分将讨论这些步骤所需的重要选择。

图片

图1 EEG微状态分析概览

A:在受试者层面识别微状态地形图。a请参考本期的Nagabhushan Kalburgi等人研究。

B:识别均值和总均值地形图。b经过修改的空间排序。

C:总均值、均值和受试者层面地形图的层次排序。c有关如何将您的地形图与其他已发布的地形图进行比较的更多信息,请参考本期的Koenig等人的Metamaps论文。

D:在受试者层面上将模板地形图反向匹配到EEG的GFP(Global Field Power,全局场功率)峰值。d请参考(Murphy等人,2022)的论文,该论文证明了使用组均值地形图作为模板提取时间特征会导致错误的结果。

E:在受试者层面上提取时间参数。

2.1. 识别个体微状态图

      如上所述,在微状态分析的第一步中,需要识别代表特定大脑网络的连贯激活的个体微状态图,这种激活在短时间内发生(图1A)。这是通过对个体预处理EEG记录的电位场图地形的时间序列应用聚类分析来实现的。这些个体图基于它们的地形相似性进行聚类,然后被分配到同一类。请注意,这种聚类允许极性反转,这是通过使用平方空间相关系数作为相似性度量,并使用第一主成分代替平均值来获得聚类模板图来实现的(Pascual-Marqui等人,1995)。该工具箱提供了一个方便的流程,可以在一步中识别多个受试者的不同数量的个体微状态图。研究已经描述了聚类数解决方案在4-7类之间变化。

2.2. 微状态图的平均和排序

      由于对单个EEG数据集的初始聚类产生了没有特定顺序的个体微状态图,所以分析的下一步是重新排序个体微状态图,以最大化它们在受试者之间的共享方差。根据当前的问题,这可以为所有受试者的EEG共同完成,或者为不同的组和/或条件分别完成。基于这种对个体模板图的排序,现在可以计算有意义的组、条件或样本平均微状态图(图1B)。请注意,如果获得了几个平均微状态图(例如,组平均、条件平均、组和条件平均的总平均),则需要重复排序,以允许计算总平均微状态图模板(图1B)。个体微状态模板的排序需要相应地更新。

      最后,文献中的微状态类通常根据它们的地形以特定的方式进行标记(Custo等人,2017;Koenig等人,2002),这与这些微状态的功能关联有关。因此,为了与已发表的文献进行比较,有用的是以一种引用这些已发表的模板的方式对微状态模板图进行排序和标记(图1C)。可以根据与已发表的图的相似性对总平均模板图进行排序,然后根据总平均图对个体和组级模板图进行排序(图1C)。如果总平均模板图的地形特征与已发表的模板足够相似,并且具有高的空间相关性,那么它们的功能角色可以被认为是相似的(参见Koenig等人,本期(Metamap论文))。因此,工具箱提供了以多维度尺度上的空间相关性的形式量化和可视化相似性的可能性。如果总平均模板图与已发表的模板图不足够相似,数据可能代表以前的研究中没有解决的特征,或者可能需要进一步的预处理。如果选择了一个在以前的研究中没有使用过的聚类数,仍然可以通过使用不同数量的聚类与模板图比较地形来按有意义的顺序对图进行排序。

      该工具箱提供了一整套工具,用于在优化其序列以获得最大的共享方差后,获得跨受试者的平均微状态图,将组平均模板图组合成总平均模板图,可视化获得的结果并将其与已发表的模板进行比较,并根据代表性的平均模板更新个体模板图的顺序。

2.3. 异常值检测 

      微状态网络的外观存在相当大的个体间变异性,一些个体微状态图可能与原型网络类别没有任何对应关系,包括这里提供的示例。有一些伪像(眼动、眨眼、电极的高阻抗)会产生EEG信号,这些信号可能被错误地识别为大脑微状态。因此,如果个体的微状态图明显偏离文献中或样本中的通常外观,这可能是由于EEG质量低。因此,检查微状态图是识别和消除逃避预处理程序的伪迹并从而提高数据质量的关键步骤。本工具箱提供了两个选项 - 数据质量检查和异常值检测。数据质量检查选项检测具有异常通道的数据集,这些通道产生斑驳的图,这些图通过通道插值得到解决。异常值检测选项检测与组的其他成员有很大差异的地形或错误状态。由于异常值检测必须受到保护,以防止错误地识别不同顺序的个体微状态模板,因此只有在正确排序模板后才能应用异常值检测。

2.4. 反向匹配和微状态动态的量化 

      微状态分析的下一步是对组成数据集的个体记录的时间动态进行量化、可视化和导出,这些数据可以用于进一步的统计分析。在这个步骤中,所有最初的个体电势场图都被分配给与之最匹配的微状态模板图(即进行反向匹配),从而在每个个体中得到一个连续的微状态图序列(图1D)。接着,提取这些确定的微状态的特征。典型的微状态动态特征包括:每个微状态类别的平均持续时间(以毫秒为单位)、每秒的平均出现次数、每个微状态类别对EEG信号的平均贡献百分比、微状态类别的全局场强、转移概率、与已发布模板的空间相关性、每个微状态类别的解释方差,以及所有微状态类别组合的全局解释方差(图1E)。工具箱在整个样本中一步提取所有这些特征,绘制它们,并以可以直接被常见的电子表格和统计软件使用的多种格式导出它们。

表1 在反向匹配后量化的EEG微状态的时间动态概览及其在大脑网络活动方面的可解释性。

图片

      反向匹配和量化可以使用个体模板图、总平均模板图或已发布的模板图进行。根据个体模板图进行反向匹配和量化的优点是提供了所选模板与其相应的EEG数据之间的最佳匹配。然而,为每个受试者使用不同的模板会降低导出的个体微状态特征的可比性(Kleinert正在审阅中),因为个体模板图中的空间变异可能会增加提取特征中的变异。因此,许多研究已经使用总平均模板图对数据进行了反向匹配,这保证了受试者之间的一致分配,从而实现了提取的微状态特征的最佳可比性。请注意,基于组级地形图的拟合是不推荐的,因为它可能引入假阳性发现(Murphy等人,2022)。为了保守的统计分析,特征提取应该始终基于一个单一的公共平均模板,或者根据这样一个公共模板排序的个体模板图。

2.5. 比较微状态图 

      组和条件可能不仅在特定微状态类的相对存在、发生或持续时间上有所不同,而且在其典型微状态图的空间分布上也有所不同。工具箱目前提供了一个接口到Ragu(Habermann等人,2018),允许对这种差异进行统计测试。请注意,如果在同一微状态类中找到组和/或条件之间的一致的地形差异,会削弱这确实总是同一微状态类的概念。在这种情况下,我们建议考虑涉及的组/或条件平均模板图的共享方差,这表明源空间中的共享方差。此外,这种显著的地形差异给出了使用反向解决方案进一步探索这些差异的理由。

3.微状态分析中的重要要求和选择

3.1. EEG预处理建议 

      作为微状态分析的前提条件,应进行特定的预处理步骤。以下对此进行了描述。

3.1 时间和空间滤波

      EEG信号应适当地进行带通滤波。典型的高通滤波范围是1-2 Hz,低通滤波范围是20-40 Hz。这应该消除大幅度、低频伪像(如出汗、皮肤电位等)和高频伪像(如肌肉、线噪声等),同时保留生理性的大脑信号。但请注意,对于睡眠状态下的EEG记录,这样的高通滤波可能会有问题在移除或插值所有坏通道后,必须将EEG信号重新参考到平均参考。

3.1.1 时间和空间采样

      采样率必须与滤波率相容,以避免混叠。电极安装应均匀覆盖整个头皮,并具有合理的密度。张等人,2022年不建议对4类解决方案使用少于10-20系统(张等人,2021年)。如果要使用更多的微状态类或要识别反向解决方案,则需要更密集的阵列(Michel & Brandeis,2009年)。微状态工具箱能够在同一分析中处理不同的电极安装。

3.1.2 静息状态数据的时段划分和伪迹检测

       与大多数其他EEG分析一样,在微状态分析之前,数据应该已经进行了伪迹编辑,并满足数据质量的通常接受标准。这通常意味着,在消除了带有伪迹的时间段后,要分析的EEG呈现为几个合理的无伪迹时间段。与此同时,每个EEG时段的开始和结束时的微状态识别都会受到损害,因为在时段边界处的微状态的开始或结束可能已被截断,微状态的真实时间范围仍然未知。因此,EEG时段应尽可能长,避免引入不必要的时段边界。与其他EEG分析方法(如ERP或FFT)相反,EEG时段大小不需要是常数。

3.2. 聚类中的选择 

3.2.1 聚类方法的类型

      对于静息状态的微状态分析,我们建议使用修改后的k均值算法。对算法所做的修改确保了相反极性的地形图被视为等价的,如第2节所述。因为k均值算法的结果取决于随机选择的起始条件,所以它存在一个问题,即它可能不总是产生全局最优解(即解释最大可能数量的方差的解)。因此,工具箱提供了重新初始化随机新的起始条件并保留整体最佳聚类解的可能性。对于探索性数据分析,可能只需要5次重新启动。对于文章发表,建议至少重新启动20次。工具箱还提供了AAHC作为一个选项,这还有待测试和验证。

3.2.2 类别数量

     每个数据集中的活跃类别数量是一个重要参数,因为它强烈影响结果,但由于可能没有微状态的“真实”数量,所以很难确定。有用的微状态类别数量既应捕获数据的相关细节,又应保持泛化性。诸如感兴趣的对比、数据质量、样本大小等因素可能会影响到给定聚类数量的微状态解决方案的适用性。我们和其他人正在实施确定数据驱动方式和基于这些目标的最佳聚类解决方案数量的措施。随着这些工具的可用,工具箱将进行更新。与此同时,我们建议用户充分探索在他们的实验数据上选择不同数量的聚类对结果的影响,以便最佳地理解他们的选择的含义。

3.2.3 聚类/下采样的数据选择

       如引言所述,微状态模型假设EEG场存在周期性的极性反转,代表单一的全局大脑状态。因此,对于这些极性反转的时刻,该模型不能解释任何数据,反过来,这些极性反转时刻的测量也不能由微状态模型解释(Michel & Koenig, 2018)。在微状态模板识别和在原始数据上反向匹配这些模板时,已经使用了两种方法来克服这个问题:

a. 基于全局场功率峰值地形图的聚类和反向匹配

      仅在GFP(Global Field Power,全局场功率)峰值处对原始EEG数据进行反向匹配,利用了在给定假设下,所有与微状态分析相关的过程都是由源和传感器空间中的共同的同相和反相振荡来解释的,假设存在一些恒定的背景噪声,微状态模型在这些振荡的假定的同时峰值和谷值处具有瞬时最佳的信噪比。因此,这些时刻的特点是它们是全局场功率的瞬时最大值。为了避免解释极性反转时刻的问题,常见的解决方案是仅选择GFP的瞬时峰值处的地形图进行聚类、反向匹配和特征提取,因为这些时刻可能具有最佳的信噪比。对于剩余的数据,可以使用最近邻准则,该准则为与其最相关的GFP标签分配相同的标签。

b. 在原始数据的所有样本上进行聚类和反向匹配,并应用标签平滑

       对原始EEG的每个离散拓扑图进行反向匹配并平滑标签,利用了这样一个事实:对于通常由相对较慢的振荡主导的EEG,非常短的微状态是不可能的,因此,只分配给相同微状态类的非常短的时间段可能是由噪声解释的。这样的短时期会增加转换的次数,但聚类和反向匹配过程可以包括一个对状态转换次数的惩罚函数(标签平滑)。因此,带有这样的惩罚的反向匹配产生的微状态分配解释的方差最小,同时有效地抑制了非常短的微状态分配。使用这个选项时,建议的方法是选择标签平滑的参数,使得GFP(Global Field Power,全局场功率)的谷值处的短暂过渡状态可靠地被抑制,而微状态分配的其余部分保持稳定。关于平滑参数的数学定义,请参见Pascual-Marqui等人,1995年。

      工具箱包括选择两种方法的选项。更常用的选择是仅从GFP峰值中提取微状态地形图,这也在计算上更效率。因此,我们目前建议仅在GFP峰值处提取个体模板地形图并反向匹配连续的EEG数据。同时,我们注意到,GFP峰值选择和标签平滑方法都可能使数据偏向于高估微状态持续时间。

如果您对脑电等数据处理感兴趣,欢迎浏览思影科技课程及服务,可浏览以下链接(可添加微信号siyingyxf18983979082获取原文,另思影提供免费文献下载服务,如需要也可添加此微信号入群):

上海:

第三十一届近红外脑功能数据处理班(上海,8.17-22)

第四十一届脑电数据处理中级班(上海,8.23-28)

第九届R语言统计班(上海,9.22-26)

重庆:

第三十二届近红外脑功能数据处理班(重庆,9.7-12)

第三十六届脑电数据处理入门班(重庆,9.22-27)

北京:

第七届脑电机器学习班(Matlab版,北京,10.10-15)

第四十二届脑电数据处理中级班(北京,10.18-23)

南京:

第三十七届脑电数据处理入门班(南京,10.14-19)

数据处理业务介绍:

思影科技功能磁共振(fMRI)数据处理业务

思影科技弥散加权成像(DWI)数据处理

思影科技脑结构磁共振(T1)成像数据处理业务 

思影科技啮齿类动物(大小鼠)神经影像数据处理业务 

思影科技定量磁敏感(QSM)数据处理业务

思影科技影像组学(Radiomics)数据处理业务

思影科技DTI-ALPS数据处理业务

思影数据ASL数据处理业务

思影科技灵长类动物fMRI分析业务 

思影科技脑影像机器学习数据处理业务介绍

思影科技微生物菌群分析业务 

思影科技EEG/ERP数据处理业务 

思影科技近红外脑功能数据处理服务 

思影科技脑电机器学习数据处理业务

思影数据处理服务六:脑磁图(MEG)数据处理

思影科技眼动数据处理服务 

招聘及产品:

思影科技招聘数据处理工程师(北京,上海,南京,重庆)

BIOSEMI脑电系统介绍

目镜式功能磁共振刺激系统介绍

4.教程

4.1. 安装工具箱和依赖项 4.1.1 工具箱信息

     静息态微状态分析的EEGLAB工具箱是EEGLAB的一个插件(Delorme & Makeig, 2004),为程序的标准用户界面添加了微状态分析的选项。该工具箱是为科学目的开放的。工具箱需要MATLAB 2022b或更高版本和EEGLAB 2021或更高版本。工具箱已在MATLAB 2022b和EEGLAB v2021.1版本下进行了测试。请注意,一般来说,微状态网络也可以在平均诱发电位中进行研究(从任务相关的EEG中获得)(例如,Brandeis等人,1995, 1998; Schiller等人,2016)。然而,本文介绍的微状态工具箱专门为静息态EEG数据的分析而开发,不适用于平均的事件相关电位。我们建议使用其他软件工具,如RAGU(Habermann等人,2018; Koenig等人,2011)或CARTOOL(Brunet等人,2011)来分析事件相关数据。

4.1.2 下载并设置工具箱

   为了运行微状态分析,需要Statistics and Machine Learning Toolbox和Optimization Toolbox。要下载工具箱,可以使用EEGLAB插件管理器,通过菜单项File → Manage EEGLAB extensions进行操作。为了让工具箱集成到EEGLAB中,其完整且未更改的文件和文件夹结构必须位于活动的EEGLAB安装的plugin-folder中,这样eegplugin_microstates.m文件就可以在EEGLAB目录的…/plugins/microstates子目录中找到。

4.1.3 工具箱的使用

     该工具箱适合于初学者和有少量MATLAB经验的个人,以及经验丰富的MATLAB用户。使用工具箱进行静息态微状态分析有两种方法。您可以使用EEGLAB的图形用户界面(GUI)来访问大多数功能。或者,可以使用命令行提示来调用函数,这样整个分析可以作为一个脚本运行。为用户提供了一个包含所有步骤和推荐参数的示例脚本。此脚本包含有关推荐的文件夹结构组织的信息,该组织允许导入个别文件并根据文件夹组织将它们结构化为组。以下部分提供了如何基于对样本数据集的分析使用GUI和命令行方法分析数据的详细信息。

图片

图2.MICROSTATELAB 界面概览 

A:EEGLAB的标准用户界面。可以通过菜单选项“数据集”来访问数据集。

B:微状态分析步骤可以通过“工具 → MICROSTATELAB”选项来访问。

C:可以使用EEGLAB的“绘图”选项来访问微状态可视化选项。教程中引用的微状态工具箱旁边的字母也在其他适用的GUI窗口中进行了交叉引用。

     主要的微状态工具箱GUI功能位于EEGLAB菜单Tools中,而在菜单Plot中的功能用于可视化微状态图(图2)。

     请注意,您可以通过点击MATLAB中的Home → Save Workspace并选择一个目录来保存整个MATLAB工作空间,包括导入的数据和任何微状态分析步骤。这样做是很有用的,因为在微状态分析过程中,某些步骤可能会非常耗时,这取决于样本大小、采样率和EEG记录的持续时间。要加载保存的工作空间,点击Home → Open并选择您保存的工作空间。

4.2. 示例数据集 

       本教程的示例数据集包括34名参与者的眼睛打开和眼睛闭合的EEG数据,持续3分钟。这些数据集是来自更大的多特蒙德生命研究的子样本(有关研究协议的详细描述,请参见Gajewski等人,2022年)。可以在此处找到示例数据和有关预处理的信息:https://osf.io/yqt7k/。微状态分析示例数据→预异常检测文件夹包含在使用工具箱的异常检测功能进行数据质量评估之前的数据。微状态分析示例数据→异常检测后文件夹包含已经经过额外预处理的数据(在专家评估员的视觉检查后插值坏通道和拒绝带有伪迹的时期,详见图3D)。示例数据按照层次结构文件夹进行排序,并根据第4.4.1节中描述的格式进行标记。

4.3. 使用图形用户界面(GUI)进行探索性数据分析

4.3.1 数据质量评估

图片

图 3 数据质量检查 

      要检查数据质量,请从EEGLAB GUI点击‘工具 → MICROSTATELAB → 数据质量检查’。

A:在0.04的阈值下进行数据质量检查的输出。标记为待审阅的数据集,当被选中时,会显示前10个聚类解决方案地形图的拓扑图。数据可以被标记为排除。

B 和 C:超过0.04阈值的数据集的示例拓扑图。

B:包含可能不需要进一步预处理的非常少量残留伪迹的数据集的示例。

C:包含可能从进一步预处理中受益的大量残留伪迹的数据集的示例。

D:带有异常地形图的数据集列表以及为解决不良拓扑图而进行的额外重新处理。请注意,对于数据集s01_EC和s01_EO,由于在个体层面上标记为异常的地形图是可以接受的,因此没有进行任何额外的重新处理。

      在您的EEG数据从“微状态分析示例数据 - 预异常检测”文件夹中的闭眼和睁眼条件成功加载到EEGLAB中,并在开始微状态分析之前,关键是确定EEG数据中可能存在的残留伪迹的数据集。大量的伪迹可能导致非典型的地形图拓扑,这会影响所有下游分析。这可以通过使用工具→MICROSTATELAB→数据质量检查选项来完成。生成一个交互式的GUI窗口,允许用户设置检测由坏通道引起的残留伪迹的阈值(图3A)。自动选择选项突出显示包含超过所选阈值(此处为0.04)的残留伪迹的数据集,这可能会影响该数据集的时间参数。点击突出显示的点显示该数据集的名称和模板地形图的拓扑。可以通过进一步的预处理来解决这些坏的拓扑。对于大型数据集,用户可以标记为保留具有轻微拓扑偏差的数据集,或者基于他们对拓扑的判断标记数据集从分析的其余部分排除,如果没有其他预处理选项。图3B和C显示了从示例数据获得的异常拓扑。地形图上方的数字表示给定地形图解释的数据量,地形图按解释的方差递减的顺序排序。如果一个非典型地形图的解释方差非常低,并且在用户打算用于其分析的最大聚类数内没有出现非典型地形图,则不需要进一步的预处理(图3B)。但是,如果非典型地形图在数据中解释了大量的方差,建议进行进一步的预处理(图3C)。示例数据集经过了图3D中指示的额外预处理,并且也可用。

4.3.2 识别个体模板地形图

图片

图4.识别个体模板地形图 

      要识别个体模板地形图,请从EEGLAB GUI点击工具 → MICROSTATELAB → 识别每个数据集的微状态地形图。

A:用于识别每个EEG数据集的个体模板地形图的聚类选择的GUI窗口。通过选择所有所需的数据集,可以为此步骤提供批处理。在这里,选择了k-means算法来识别4-7微状态类别解决方案。对于任何给定的数据集,都在所有标准化数据的GFP峰值上执行了聚类,并重新启动了20次。在聚类过程中忽略了极性。完成聚类后,可以通过检查框I查看地形图。但是,对于大量的数据集,建议通过EEGLAB的Plot菜单访问此选项。

B:数据集的4至7聚类解决方案的示例个体模板地形图。可以通过访问EEGLAB的Plot菜单,在单独的标签中绘制多个数据集的模板地形图。在这个阶段,微状态没有排序,如灰色背景和每个类的通用标签所示。

C:用于识别个体模板地形图的命令行函数的摘录,如所提供的演示脚本中所使用的。指示了与GUI输入相对应的各种参数。

      完成数据质量评估并适当处理残留伪迹后,您可以通过识别个体微状态地形图开始您的微状态分析。为了用户的方便,本教程在“微状态分析示例数据 - 异常检测后”文件夹下提供了清洁数据。在EEGLAB中,按照路径工具→MICROSTATELAB→识别每个数据集的微状态地形图。可以在弹出窗口中设置聚类参数(图4A)。或者,您可以通过在工具箱脚本中评估以下代码来设置参数并执行分析(图4C)。可以通过选择绘图→绘制微状态地形图来查看未排序、未标记的个体微状态地形图(图4B)。

4.3.3 识别均值和总均值地形图

图片

图5 识别各条件的平均地形图 

    要识别闭眼和睁眼条件的平均地形图,请从EEGLAB GUI点击工具 → MICROSTATELAB → 识别平均微状态地形图。

A 和 B:在接下来的窗口中,选择了闭眼数据集和睁眼数据集的个体地形图。在忽略极性的情况下,对相应的组平均地形图进行了标记和聚类。

C 和 D:组级模板地形图在4至7聚类解决方案中的地形图。可以通过访问EEGLAB的Plot菜单,在单独的标签中绘制平均地形图。这些地形图也还没有排序,如灰色背景和通用标签所示。

E:用于识别平均地形图的命令行函数的摘录,如所提供的演示脚本中所使用的。指示了与GUI输入相对应的各种参数。

图片

图6 识别总体平均地形图 

    要识别闭眼和睁眼条件的组级模板地形图,请从EEGLAB GUI点击工具 → MICROSTATELAB → 识别平均微状态地形图。

A:在这里,选择了“跨平均的总体平均地形图”选项。

B:选择了闭眼和睁眼条件的平均地形图,并在忽略极性的情况下计算了总体平均地形图。

C:总体平均地形图在4至7聚类解决方案中的地形图。微状态类别尚未排序,如灰色背景和通用标签所示。

D:用于识别总体平均微状态地形图的命令行函数的摘录,如所提供的演示脚本中所使用的。指示了与GUI输入相对应的各种参数。

      此工具箱允许识别组或条件级均值微状态地形图以及总均值微状态地形图。如果想要等权重地对待大小不同的实验组,那么在计算中间组或条件级均值微状态地形图后逐步计算总均值微状态地形图可能是有用的。要识别均值地形图,请按照路径工具→MICROSTATELAB→识别均值微状态地形图。选择属于该组或条件的成员并提供组名(图5A,B)。此过程在所有组和/或条件中重复。如果存在两个或更多的均值地形图用于组和/或条件,必须计算总均值。要识别总均值微状态地形图,请按照路径,工具→MICROSTATELAB→识别均值微状态地形图→均值之间的总均值地形图(图6A,B)。可以通过选择绘图→绘制微状态地形图来查看未排序、未标记的组或条件级均值和总均值微状态地形图(图5C,D和图6C)。这些操作也可以使用图5E和图6D中描述的命令行脚本执行。

4.3.4 对总均值、群组级别和个体模板图进行排序

     为了用户的便利,这个工具箱允许根据与已发布模板图的整体最高空间相关性对总均值微状态图进行排序和标记,并还提供了手动排序和标记图的选项。默认情况下,工具箱包含了Koenig和同事们在2002年确定的四到七个典型微状态类别,以及Custo和同事们在2017年确定的七个微状态图,这使得可以根据这些标准模板图对个体微状态图进行排序。请注意,也可以使用其他之前发布的模板(例如,有不同的簇数量的模板)。这些地形图被存储在微状态插件的一个专门的文件夹中,并可以被导入,作为用来对总均值进行排序的已发布模板。

图片

图7 排序总均值模板图

      要排序均值模板图,请从EEGLAB GUI点击工具 → MICROSTATELAB → 编辑 & 排序模板图。

A: 在此,选择GrandMean数据集并选择交互式浏览器中的手动或模板排序选项。

B: 带有总均值模板图的交互式排序窗口。对于排序过程,选择2) 基于模板集重新排序所选解决方案中的地形图。选择要排序的解决方案的所有类。选择已发布的模板图。这里,我们选择了Custo等人(2017)的7类解决方案作为排序的已发布模板。请注意,模板图的排序也可以手动完成。

C: 通过4到7的簇解决方案对排序和标记的总均值模板图。

D: 通过选择此集合排序依赖集选项,对4到7的解决方案进行了适当的比较,对群组级模板图和个体模板图进行了排序和重新标记。

E & F: 分别用于排序总均值模板图和依赖的个体和群组均值模板图的命令行函数摘录,如所提供的演示脚本中所使用。指示了与GUI输入相对应的各种参数。

      排序可以通过点击工具 → MICROSTATELAB → 编辑 & 排序微状态图,并选择要排序的总均值图来完成(图7A)。未排序的总均值图和对总均值进行排序的各种方法将在一个新窗口中显示(图7B)。在这个教程中,我们将展示首先按照2017年Custo的地形图对总均值的7类解决方案进行排序,然后基于已排序的总均值的7类对较少的簇进行排序的推荐方法。这种方法得到了在不同簇数量解决方案中的最大的类内空间相关性(图7C),因此,最大化了使用不同簇数量得到的结果的可比性。

     在保存排序后,工具箱提供了“按此集合对所有依赖集合进行排序”的选项,该选项按照作为模板图排序的总均值对所有群组级别和个体模板图进行排序(图7D)。这些个体微状态图的排序步骤在后来用于量化个体EEG微状态动态或当微状态模板图在组或条件之间进行比较时(见下文)是至关重要的,因为只有在这一步之后,这些个体模板图的公共标签才可以被认为是指向相似的地形图。当比较地形图(第4.3.5节和4.3.9节)、检测异常微状态模板(第4.3.6节)以及反向匹配和量化微状态(第4.3.7节和4.3.8节)时,这是至关重要的,否则这些分析的结果将毫无意义。

      可以通过工具 → MICROSTATELAB → 编辑 & 排序模板图,选择总均值模板并选择交互式浏览器中的手动或模板排序选项来重新访问总均值数据集的排序。

4.3.5 比较地形图

图片

图8 比较总均值模板图与已发布模板图的地形相似性

      要比较已发布的模板图与样本数据获得的总均值模板图之间的相似性,可以使用EEGLAB Plot菜单下的“比较微状态图”选项。

A: 选择要比较的数据集的GUI窗口。在三个类别中可以选择任意数量的数据集。这里,没有选择任何个体模板图,只选择了均值集中的新的总均值模板图,而已发布的集中选择了Custo等人(2017)的图。

B: 相关矩阵的多维缩放输出,显示了总均值模板图与2017年Custo图之间的关系。该图用右侧的颜色和数字方案标记的二维点表示每个选定的模板图。这些点的相对位置被选择为使点之间的距离最大地对应于地形图之间的地形相似性,如C部分所列。因此,彼此靠近的点代表空间上相似的地形图,而相距较远的点代表空间上不同的地形图。因此,该图允许直观地可视化微状态模板在簇数量、条件、组或研究之间的地形一致性。

C: 新的总均值模板图与Custo等人(2017)的图之间的共享方差。

       一旦获得排序和标记,可以使用路径Plot → Compare microstate maps来评估各种簇数量解决方案中类的地形相似性。可以分别为单个数据集或跨多个数据集评估数据集内和数据集间的地形相似性。在这里,我们通过比较我们的样本数据的总均值图与Custo等人发布的图(2017年图(图8A))来展示这一功能。交互式GUI弹出窗口显示了总均值模板图与Custo等人的2017年图在MDS中的地形相似性(图8B)。可以使用GUI中的查看共享方差和/或导出共享方差按钮查看或导出进一步分析的共享方差(图8C)。我们的数据集中的总均值图与Custo等人的2017年图之间的共享方差大多很高(80-99%)。头皮地形的这些相似性可以解释为EEG来源的空间分布和方向的相似性,即产生这些头皮场的大脑网络。

4.3.6 异常值检测

图片

图9 异常图的检测

       一旦所有数据都已重新处理,并且上述步骤已在重新处理的数据上重复,就可以通过从EEGLAB GUI点击工具 → MICROSTATELAB → 异常检测来执行坏地形的异常检测。在p值为0.05的情况下,在任何个体的7个类中都没有检测到坏的地形。

      可以通过选择工具 → MICROSTATELAB → 异常值检测来检测个体EEG微状态图的地形异常值。如果有多个簇解决方案可用,用户必须在所有的簇解决方案中执行此步骤,如果分析是探索性的,或者如果事先选择了一个簇数量,那么应该在该簇数量上执行异常值检测。结果窗口显示了由多维缩放(MDS)算法为所选类生成的每个个体数据集的坐标(图9)。关于MDS算法的更多细节,请参考Habermann等人,2018年。选择代表个体数据集的点会生成所选类的相应地形图以供审查。可以通过顺序方式的手动检查或使用自动选择选项来排除选定的数据集,该选项基于数据集之间的Mahalanobis距离来识别异常值,该距离表示数据集不太可能是由这些数据集组成的正态分布的一部分。异常数据集可能需要进一步的预处理。建议用户使用Plot → Plot微状态图选项检查所有个体和群组级模板图的地形,以确保他们自己的数据具有良好的地形。

4.3.7 反向匹配并量化微状态动态

图片

图10 反向匹配并导出时间参数的量化

      可以使用菜单选项工具 → MICROSTATELAB → 将微状态图反向匹配到EEG来进行数据的反向匹配。

A: GUI窗口用于选择要进行反向匹配的个体数据集和用于反向匹配的模板图。这里,选择了总均值微状态图。

B: 选择用于反向匹配的簇解决方案。可以选择一个或多个选项。

C: 一旦反向匹配完成,可以通过在GUI窗口中选择数据集来导出个体受试者的时间参数,该窗口可以通过点击工具 → MICROSTATELAB → 导出时间参数来访问。请注意,只能为在上一步中进行了反向匹配的簇数量提取时间参数。

D: 反向匹配和导出时间参数的命令行提示。

图片

图11 EEG微状态的时间参数可视化

可以通过选择Plot → Plot时间参数来可视化个体主题的时间参数。

A: 闭眼数据集的时间参数。

B: 睁眼数据集的时间参数。

C: 绘制时间参数的命令行提示。

图片

图12 个体受试者层面脑电图微状态的时序动态可视化

     要查看个体受试者层面的微状态动态,可以在EEGLAB的绘图菜单下选择“绘制时序动态”。这些动态可以按照时段逐个时段进行可视化。

      为了提取微状态的时间动态,可以通过选择路径工具 → MICROSTATELAB → 微状态图反向匹配到EEG,将个体数据集的原始EEG重新表达为微状态类的序列。这里,我们推荐选择总均值微状态图作为反向匹配的模板,如第3.3节所解释的那样(图10A)。可以为所需的数据集选择一个或多个簇数量解决方案(图10B和图10C)。可以通过选择Plot → Plot时间参数为每个感兴趣的簇数量解决方案来可视化汇总的时间参数的输出,对于闭眼(图11A)和睁眼(图11B)条件。可以使用工具 → MICROSTATELAB → 导出时间参数选项将汇总的数据导出进行统计测试。结果文件保存在用户首选的位置,并包含表1中描述的时间参数。工具箱提供了将结果导出为不同输出格式的选项,这些格式可以直接导入到如SPSS或R等统计应用程序中。可以通过选择Plot → Plot微状态动态选项来检查个体数据集的微状态类时间序列(图12)。

4.3.8 反向匹配时间序列的导出

图片

图13 个体微状态类与EEG数据的时间序列匹配度。可以使用菜单选项工具 → MICROSTATELAB → 获取微状态激活时间序列(可选)来获得个体微状态类的空间相关时间序列。

A: 选择类别的数量。 

B: 选择感兴趣的数据集。

C: 保存带有微状态时间序列激活的新生成的数据集。

D: 通过选择绘图 → 通道数据(滚动)来查看微状态时间序列激活。

       对于某些研究问题,可能会对将正在进行的微状态动态与在EEG中标记的外部事件进行关联感兴趣。为此,可以生成新的EEGLAB数据集,其中包含微状态分配的时间序列。这些时间序列被存储为普通的EEG通道,每个通道代表一个微状态类,这允许使用EEGLAB的所有标准工具(如分时或平均)来处理这类数据。用户可以使用工具 → MICROSTATELAB → 获取微状态激活时间序列(可选)选项来生成这样的数据集。选择类别的数量(图13A)和感兴趣的数据集(图13B)。这会生成一个带有“_dynamics”后缀的新数据集(图13)。默认情况下,对于通道X的输出是当前EEG地形与微状态模板图X的点积,但只在EEG被分配给类X的时期,而在所有其他时期为零。此外,用户有选择整流和/或标准化数据的选项,从而产生一个二进制的开关模式。通过参考一系列事件对这种二进制微状态时间序列进行平均,从而得到在事件发生时观察到的特定微状态类的概率(例如,参见Mikutta等人,2023年;Müller等人,2005年的例子)。可以使用EEGLAB功能Plot → Channel data (scroll)为新创建的动态数据集绘制微状态分配的时间序列(图13D)。

4.3.9 为TANOVA导出至RAGU

      尽管组级的聚类程序旨在最大化每个微状态类在各个受试者之间的共性,但在您的样本的某些子组之间,一个或多个微状态类的空间分布可能存在系统性差异。由于空间分布的差异可能表示潜在神经源的差异,您可能希望测试微状态图之间的统计学显著差异。为此,您可以将个体微状态图导出到RAGU软件的功能中(Habermann等人,2018; Koenig等人,2011),该软件允许您使用地形分析方差(TANOVA)、事后测试和t-图(Habermann等人,2018)来统计测试微状态图之间的差异。

图片

图 14 TANOVA 设置 

      数据可以被导出到RAGU,通过TANOVA来比较地形差异方法是选择工具 → MICROSTATELAB → 在微状态地形中测试地形效应 (Ragu)。

A: 菜单用于编辑内部和之间的被试设计。 

B: 交互式窗口设置内部被试设计。示例数据只有一个因素 - 条件。条件的分配到不同的水平是显示的。

C: 交互式窗口设置之间的被试设计。样本数据只有一个组 - 健康对照组。 

D: 命令行提示,用于将数据导出到Ragu。

图片

图15 示例数据的 TANOVA 结果 

A: 对于每个微状态类别(x轴)标记为1-7,这对应于类别A-G,闭眼和睁眼条件之间的平均地形图的比较的 p 值(y轴)。白色区域表示在闭眼和睁眼条件之间有显著的微状态地形差异的地形图,即,A、C 和 E 类的地形图。 

B 和 C: 闭眼和睁眼条件下的 C 和 E 地形图的状态空间表示。

   要将个体微状态图导出到RAGU中进行分析,请选择功能工具 → MICROSTATELAB → 在微状态地形中测试地形效应(Ragu)。使用弹出窗口(图14A),编辑内部(图14B)和受试者之间的设计(图14C)。有关进行TANOVA的详细信息,请参考Habermann等人(2018)。闭眼和睁眼微状态图之间的比较显示在图15A中。显著不同的C类和E类地形图的状态空间表示分别显示在图15B和C中。考虑到总体平均图与Custo等人,2017年的图之间的高度空间相关性,TANOVA的结果表明,在闭眼和睁眼条件下,代表默认模式网络的地形图的发生器存在差异。

4.4 使用工具箱脚本进行批处理数据

  我们提供了一个示例脚本 MicrostateAnalysisDemo.m,用于帮助初学者和有经验的用户以标准化的方式批量处理大型数据集,并在多次运行中生成可重复的结果。下面描述了脚本的输入和生成的输出。

4.4.1 结构化预处理数据以供导入

图片

图16 该工具箱提供的演示脚本的输入(A)和输出(B)文件夹结构。

       该脚本要求输入文件夹遵循严格的结构,以便正确读取群组和条件信息。根文件夹应包含群组级文件夹,然后应包含条件级文件夹(图16A)。条件级文件夹应有各个主题的数据集。关键是各个数据集都带有主题的唯一标识符,并且在该主题的各个条件中都是一致的,以及实验条件。这种格式对于在最后一步进行TANOVA分析尤为重要。请注意,根文件夹、群组级和条件级文件夹都不应包含任何其他文件或文件夹。该脚本加载的单个主题文件应为EEGLAB .set格式。使用EEGLAB导入功能可以轻松修改此格式,使其适用于其他文件格式。启动脚本后,可以从交互式GUI菜单中选择包含输入数据的群组和条件层次结构的根文件夹。

4.4.2 设置关键分析参数

     在MicrostateAnalysisDemo.m脚本的第1部分中可以设置4.3节中描述的GUI输入。这些包括选择用于识别个别模板图的聚类参数(% 设置聚类参数)、选择用于后拟合的参数(% 设置后拟合参数),以及用于对大平均模板图进行排序的模板图(% 模板排序)。与GUI中的菜单选项相对应的参数由字母插图指示。

4.4.3 标准化脚本的输出

      通过运行 MicrostateAnalysisDemo.m 脚本生成的数据会以标准格式保存在用户在交互式 GUI 中选择的位置(图 16B)或在脚本的第1部分中定义的位置。所有输出文件夹前都有一个时间戳前缀,用于文档记录目的。用于生成输出的脚本的副本会被保存,以记录用于特定运行的参数。带有个体微状态模板图的受试者文件保存在“1_Set带有个体微状态图的文件”文件夹中,群组级和总平均模板图保存在“2_Set带有群组级和总平均微状态图的文件”文件夹中,所有这些都可以轻松导入到 EEGLAB 中。这些数据集包含已经按照脚本中使用的参数进行排序的微状态图,导入后可以使用第4.3节中描述的GUI选项进行可视化。为了方便对大型数据集进行视觉检查,脚本在“3_Png带有个体微状态图的文件”和“4_Png带有群组级和总平均微状态图的文件”文件夹中分别保存了个体、群组级和总平均模板图的图像。这些图像可作为手动检测因噪声通道或残余伪影引起的异常值的指南。请注意,目前脚本不包括异常值检测选项。但是,数据可以导入到EEGLAB,使用第4.3.4节中描述的GUI选项进行异常值检测。使用个体模板图、总平均模板图和已发布模板图提取时间参数,输出保存在“5_Csv模板动态参数的文件”中,同样的可视化保存在“6_Png绘制时间动态参数的文件”下。通过更新演示脚本的第9部分,可以轻松修改所有这些选项。

讨论

    本文介绍了EEGLAB微状态工具箱的第二个版本,用于静息态微状态分析或称为MICROSTATELAB的教程。该工具箱和教程汇集了我们目前对如何进行静息态EEG微状态分析的最佳理解和建议。对于标准应用,可以通过一个全面且高效的GUI访问该工具箱。GUI的结构旨在逐步指导用户完成完整的微状态分析,并包含一些防护措施和默认选择,以防止常见的问题。此外,GUI还带有一系列中间结果的全面可视化,使必要的数据质量检查成为分析的一个组成部分。该教程与这些分析步骤平行,并解释且证明了每一步的最重要选择。因此,该教程和工具箱应该使具有良好的EEG常识的用户能够理解每个分析步骤背后的基本理念和必要的选择,并进行最先进的微状态分析。

      除了实施当前的实践外,基于标准GUI的分析流程还带有一些容易访问的特性,这些特性尚未成为标准,但我们认为它们是未来微状态研究的良好实践。具体来说,用户有高效、交互式且视觉信息丰富的方法来检测微状态图中的异常值,这有助于改进大型数据集中的数据质量。这一点很重要,因为到目前为止,没有现有的自动静息态EEG预处理流程在使原始EEG数据适用于微状态分析时是完全可靠的(Nagabhushan Kalburgi等人,本期)。其次,该工具箱带有广泛的选项,可以对获得的微状态模板图进行排序,无论是在具有不同群集的解决方案中,还是参考先前发布的模板图,这与试图开发工具来客观地整合不同的静息态EEG微状态研究的尝试相吻合(Koenig等人,本期)。最后,该工具箱允许使用TANOVAs对微状态模板图之间的空间差异进行量化和统计测试,使用户不仅能够评估和测试微状态特征的差异,还能评估和测试微状态地形的差异。这一点很关键,因为许多研究错误地假设,例如,群体平均微状态模板图之间的高空间相似性是认为这些图之间没有系统地形差异的理由。

      除了扩展的标准案例外,该工具箱还允许使用MATLAB命令行和脚本界面操作大量的分析参数。因此,专家用户可以轻松地使用该工具箱来深入探讨一些非传统的问题,例如连续EEG微状态中的事件相关变化、微状态序列中的模式识别等,并向工具箱中添加其他方法。由于该工具箱是开源的,熟悉MATLAB的用户还可以通过检查代码来深入了解该方法,并在必要时为未来的版本提供更正和改进。

      与其他工具箱不同,此工具箱尚未包含选择类别数量的自动程序。我们已经广泛测试了许多提议的标准,并迄今为止发现结果仍然存在争议。同时,我们认为大脑功能数据中的聚类结构可能不仅限于一个规模(Van De Ville等人,2010),这可能进一步复杂化找到“正确”类别数量的问题,如果从一个综合的EEG微状态分析中得出的结论严重依赖于一个特定的微状态类别数量选择来适应数据,这对我们来说似乎是有问题的。因此,我们目前的务实建议是,研究人员应该付出努力,以了解选择类别数量的变化对获得的结果意味着什么,并以合理考虑到这种不确定性的方式选择、呈现和讨论他们的结果(例如,Diezig等人,2022年)。工具箱的未来版本可能会为用户提供更新的方法来解决这个问题。

     最后,我们简要地将本文与本特辑中的其他一系列文章联系起来。Nagabhushan Kalburgi等人的论文(本期)系统地比较了不同的自动EEG预处理流程。在2022年伯尔尼的微状态会议上,EEG预处理标准被视为微状态分析的一个重要问题,这也是本特辑的动机。根据这篇论文的结论,我们增加了该工具箱的工具,可以在单个聚类地形图的级别上识别异常。另一个联系是与Koenig等人的论文(本期)相关,该论文整合了EEG微状态模板地形图及其跨多项研究的相关实证发现。工具箱提供了使用这些研究中提出的任何模板地形图的可能性,以及作者获得的元微状态模板地形图。另一方面,工具箱的用户可以直接将其分析中获得的模板导入到上述论文中提到的软件中,并客观地将他们的微状态模板与以前发布的模板及其相关发现联系起来。还有一个链接是与Kleinert等人的论文(本期)相关的,其中作者测试了在大样本的EEG记录(n = 583)中使用不同方法获得的微状态特征之间的再测试可靠性和方法学一致性。他们发现,与使用个体模板地形图的回归相比,使用平均模板地形图的回归产生了更可靠的微状态特征,这是我们推荐这种方法。因此,我们希望本文与本特辑中的其他文章一同,能够促进这次会议所特有的合作精神。

      总之,我们希望我们的工具箱能帮助来自不同领域的研究者提高对静息大脑的时间动态的了解,以及新提供的微状态分析中关键决策的建议,以及新提供的功能将有助于提高微状态研究的当前方法学标准。

如需原文及补充材料请添加思影科技微信:siyingyxf或18983979082获取,如对思影课程及服务感兴趣也可加此微信号咨询。另思影提供免费文献下载服务,如需要也可添加此微信号入群,原文也会在群里发布,如果我们的解读对您的研究有帮助,请给个转发支持以及右下角点击一下在看,是对思影科技的支持,感谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值