Itoh首先给出了传统解包裹算法的数学描述!。传统的相位解包裹操作是通过对空间相邻点相位值的比较来完成的。根据抽样定理,如果相邻采样点的相位差不超过z,则对应的相位解包裹处理是非常简单的,理论上以某点为起始点沿某一路径对包裹相位的差分积分就可以恢复真实相位。但是由于采样不足,阴影条纹断裂,频谱泄漏等原因,相位解包裹常常会产生展开错误。图2-2展示了一幅图像的包裹相位分布[41,图2-2(a)不含噪声,图2-2(b)含有噪声,用灰度从黑到白表示相位值从-z到π。假使已知尸点的相位值p,,其它的点如图 2-2(a)中的口点可以通过计算经过任意路径的2x阶跃来进行相位解包裹。在图2-2(a)中,沿任何路径A,B都可以得到p。=p,+6n。而如图2-2(b)所示,在中间部分相位阶跃产生噪声点(图中 1、2 之间),于是沿路径A解包赛得po=p,+6π,沿路径B解包裹得po=p,+4x,而且这种错误还会继续向后续过程传播
为 了消除依赖路径方 法 引起的误 差扩展 , 避 开相位噪声点, 获取可 靠的相位 数据 ,许 多学者又研 究 了与路径 无 关的算法 。 相位解包裹算法有很多, 表 2 一 3 选 择 了一 些有代表性的加 以评 述 。
-
条纹级数法(Fringe Counting):这是一种常用的方法,通过判断相位阶跃,全场遍历就可以求得相位的分布。如果存在噪声,这种方法就会产生错误,并可能向后续相位展开过程传播。
-
细胞自动算法(Cellular Automata Method):这种方法首先利用寻找噪声点的四点法标定噪声点,然后对每一行、每一列按一定的规则进行迭代,最后求得全场相位。对于相位截断线尺度极小或者孤立噪声点的情况效果较好,但依赖于对噪声点、相位截断线位置的标定。
-
区域展开法(Phase Unwrapping by Region):将相位图分成不包含截断线的区域,先对每一区域相位解包裹,后对区域边界进行比较以确定区域之间是否存在阶跃。划分区域的原则是比较相邻的包裹相位差是否在某一限定阈值内。
-
最小二乘法(Minimum Two Norm):利用数学上最小二乘概念,计算期望相位图与真实相位图的相位梯度偏差的最小二乘并获取真实相位的逼近。常见的如最小二乘算法和最小零范数。
-
基于小数重合法的算法:这类算法通过投射一系列不同频率的条纹图像到物体表面,提高了相位解包裹操作的可靠性。
-
基于双频条纹投射的算法:这种算法认为每一采样点的相位是时间的函数,相位解包裹是沿着时间轴进行,而不是传统的依赖路径的空间相位解包裹算法。
-
基于序列条纹投射的算法(多幅周期性变化的相位图沿时间轴相位展开):这些算法的共同点是采用了变频条纹投射技术,认为每一采样点的相位是时间的函数。