2024全国大学生数学建模国赛C题思路模型-遗传算法优化算法的种植优化理论分析

1.C 题 农作物的种植策略

根据乡村的实际情况,充分利用有限的耕地资源,因地制宜,发展有机种植产业,对乡村经济 的可持续发展具有重要的现实意义。选择适宜的农作物,优化种植策略,有利于方便田间管理,提 高生产效益,减少各种不确定因素可能造成的种植风险。

某乡村地处华北山区常年温度偏低,大多数耕地每年只能种植一季农作物。该乡村现有露天 耕地 1201 ,分散为 34 个大小不同的地块,包括平旱地、梯田、山坡地和水浇地 4 种类型。平旱 地、梯田和山坡地适宜每年种植一季粮食类作物;水浇地适宜每年种植一季水稻或两季蔬菜。该乡 村另有 16 个普通大棚和 4 个智慧大棚,每个大棚耕地面积为 0.6 亩。普通大棚适宜每年种植一季蔬菜和一季食用菌,智慧大棚适宜每年种植两季蔬菜。同一地块(含大棚)每季可以合种不同的作物。详见附件 1。

根据农作物的生长规律,每种作物在同一地块(含大棚)都不能连续重茬种植,否则会减产;因含有豆类作物根菌的土壤有利于其他作物生长,从 2023 年开始要求每个地块(含大棚)的所有土 地三年内至少种植一次豆类作物。同时,种植方案应考虑到方便耕种作业和田间管理,譬如:每种 作物每季的种植地不能太分散,每种作物在单个地块(含大棚)种植的面积不宜太小,等等。2023 年的农作物种植和相关统计数据见附件 2。

2.参考模型:

2.1遗传算法优化过程分析

遗传算法 (G en et ic Al go rit h m ,G A ) 是模拟生物在 自然环境中的遗传和进化过程而形成 的一种迭 代 自适应性全局 优化概率搜索算法 它最早是 由美国密执根 ( M ich iga n) 大学的 H o ll a n d 教授提出的 。19 7 5 年 其专著 《A d a pta i o n i n N a tu r a l an d A rt ifi e i a l s y s te m s ) 的出版 标志着遗传算法的创立 。此后 , 有很多学者对其进行了大量的研 究 推动 了这种方法的迅速 发展 。

2.2遗传算法的工作原理

GA 主要是通过遗传操作对群体内的个体进行结构重组,以不断搜索出群体内的优良个逐渐逼近最优解。GA寻优包含5个基本要素:参数编码,适应度数确定,初始群体体,生成,遗传操作(复制、交配、变异)以及终止规则。

2.2.1 编码

GA 的产生受到了自然界生物进化现象的启发,它最初是对自然进化过程的一个简单的模拟。所以,GA 从生物学里借用了一些术语:“个体”便是问题的一个可能解;“种群”表示一组“个体”的集合。在遗传算法中如何描述问题的可行解,即把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法就叫做编码。编码是应用遗传算法要解决的首要问题,也是设计遗传算法时的一个关键步骤。编码方法除了决定了个体的染色体排列形式之外,它还决定了个体从搜索空间的基因型变换到解空

间的表现型时的解码方法,编码方法也影响到交配算子、变异算子等遗传算子的运算方法。由此可见,编码方法在很大程度上决定了如何进行群体的遗传进化运算以及遗传进化运算的效率。

针对一个具体问题,如何设计一种完美的编码方案一直是遗传算法的应用难点之一,也是遗传算法的一个重要研究方向。可以说,目前还没有一套既严格又完整的指导理论及评价准则帮助我们设计编码方案。评估编码策略常采用以下3个规范(Dorigo,1992):

(1)完整性(completeness)问题空间中的所有点(候选解)都能作为GA空间中的

点(染色体)表现。(2)健全性(soundness) GA 空间中的染色体能对应所有问题空间中的候选解。(3)非冗余性(nonredundancy) 染色体和候选解一一对应。上述3个评估规范是独立于问题领域的普遍准则。编码应该立足于适合问题的解决,而不是描述问题。编码应能表示与问题真正相关的参数,而且避免其它参数,用与问题不直接相关的参数将引起问题的变化。因此,对于某个具体的应用领域而言,应该客观的比较和评估该问题领域中所用的编码方法,由此得到更好的方法或策略。

目前编码的方法大致有三类:0、1二进制编码、实数编码及组合优化中的序号编码。(1)二进制编码 二进制编码方法是遗传算法中最常用的一种编码方法,它使用的编码符号集是由二进制符号0和1所组成的二值符号集,它所构成的个体基因型是一个二进制编码符号串。

二进制编码方法有下述一些优点:

① 编码、解码操作简单易行。

② 交配、变异等遗传操作便于实现。

③ 符合最小字符集编码原则。

④便于利用模式定理对算法进行理论分析。

(2)浮点数编码 所谓浮点数编码方法,是指个体的每个基因值用某一范围内的一个浮点数来表示,个体的编码长度等于其决策变量的个数。因为这种编码方法使用的是决策变量的真实值,所以浮点数编码方法也叫做真值编码方法。主要有如下优点:

① 适合于在遗传算法中表示范围较大的数。

② 适合于精度要求较高的遗传算法。

③ 便于较大空间的遗传搜索。

④ 改善了遗传算法的计算复杂性,提高了运算效率。

⑤ 便于遗传算法与经典优化方法的混合使用。

⑥ 便于设计针对问题的专门知识的知识型遗传算子。

⑦ 便于处理复杂的决策变量约束条件。在浮点数编码中,必须保证基因值在给定的区间限制范围内,遗传算法中所使用的交配变异等遗传算子也必须保证其运算结果所产生的新个体的基因值也在这个区间限制范围内。再者,当用多个字节来表示一个基因值时,交叉运算必须在两个基因的分界字节处进行,而不能在某个基因的中间字节分隔处进行

(3)符号编码方法符号编码方法是指个体染色体编码串中的基因值取自一个无数值含

义、而只有代码含义的符号集。这个符号集可以是一个字母表,如{A,B,C,D,…):也可以是一个数字序号表,如{1,2,3,4,5,…:还可以是一个代码表,如{Ai,A2,A,A4’As…}等等。

符号编码的主要优点是:

① 符合有意义积木块编码原则。

② 便于在遗传算法中利用所求解问题的专门知识。

③ 便于遗传算法与相关近似算法之间的混合使用。

但对于使用符号编码方法的遗传算法,一般需要认真设计交配、变异等遗传运算的操作方法,以满足问题的各种约束要求,这样才能提高算法的搜索性能。

2.2.2形成初始群体

遗传操作是对众多个体同时进行的。这众多的个体组成了群体。在遗传算法处理流程中继编码设计后的任务是初始群体的设定,并以此为起点一代代进化直到按某种进化停止准则终止进化过程,由此得到最后一代(或群体)。

遗传算法中,常用随机的方法产生初始群体,即随机生成一组任意排列的字符串。群体中个体的个数称为群体的维数。群体的维数越大,其代表性越广泛,算法陷入局部解的危险就越小,最终进化到最优解的可能性就越大。但是,群体规模太大会带来若干弊病:一是从计算效率着眼,群体越大,其适应度评估次数增加,所以计算量也增加,从而影响算法效能二是群体中个体生存下来的概率大多采用和适应度成比例的方法,当群体中个体非常多时,少量适应度很高的个体会被选择而生存下来,但大多数个体却被淘汰(DeJong KA.1975),这会影响交配操作的进行。另一方面,群体规模太小,会使遗传算法的搜索空间中分布范围有限,因而搜索有可能停止在未成熟阶段,引起未成熟收敛(premature convergence)现象。要避免未成熟收敛现象,必须保持群体的多样性,即群体规模不能太小。显然,

2.2.3 计算适应度

在群体中,每个个体的“性能”用“适应度函数”来度量,衡量字符串(染色体)好坏的指标是适应度(Fitness)。遗传算法的一个特点是它仅使用所求问题的目标函数值就可得到其适应度。评价个体适应度的一般过程如下:

(1)对个体编码串进行解码处理后,可得到个体的表现型。

(2)由个体的表现型可计算出对应个体的目标函数值。

(3)根据最优化问题的类型,由目标函数值按一定的转换规则求出个体的适应度适应度函数是今后优胜劣汰的主要判别依据。最优化问题通常可归结为极大化问题,利用数学公式描述可写作:maxf(x)。其中/(x)为目标函数,S为可行域,它们是由实际问题的具体条件决定的。

2.2.4 复制

在遗传算法中,通过复制将优良个体插入下一代新群体,淘汰劣质个体,体现“优胜劣汰”的原则。发展各种复制操作的目的是为了避免基因缺失,提高全局收敛性利效率,日前为止发展的主要复制操作类型(陈菊新,2001)见表2-1。复制操作策略与编码无关,复制的主要思想是串的复制概率正比于其适应度,即适应度大的个体接受复制,使之繁殖:适应度小的个体则予删除,使之死亡。

2.2.5 交配

遗传算法中的交配操作是仿照生物学中杂交的方法,对两个父代个体的部分结构加以替换重组(如图 2-1所示),从而产生新的个体交配操作的作用是组合出新的个体,在串空间进行有效搜索,使得遗传算法的搜索能力得以快速提高。交配操作是 GA区别于其它进化算法的重要特征(周春光,1996),在遗传算法中起核心作用。

2.2.6 变异

变异操作的基本内容是对群体中的个体串中的某些基因值作变动。就基于字符集(0,1}的二进制串而言,变异操作就是按照一定概率随机的改变染色体中的某些基因位的值,即由1变为0或由0变为 1(如图 2-2所示)。一般来讲,变异操作的具体步骤如下:

(1)在群体中所有个体串范围内随机的确定变异的基因位。

(2)根据事先设定的变异概率 Pm 对个体的这些基因位进行变异。

在遗传算法中使用变异操作的目的主要有两个:(1)改善遗传算法的局部搜索能力 遗传算法使用交配算子已经从全局的角度出发找到了一些较好的个体编码结构,它们已接近或有助于接近问题的最优解。但仅使用交配算子无法对搜索空间的细节进行全局搜索。这时,如再使用变异算子来调整个体编码串中的部分基因值,就可以从局部的角度出发使个体更加逼近最优解,从而提高了遗传算法的局部搜索能力。

(2)维护群体的多样性,防止出现早熟现象 变异算子用新的基因值替换原有的基因值从而可以改变个体编码串的结构,维护群体的多样性,这样就有利于防止出现早熟现象。变异在 GA 中的作用是第二位,目前发展的主要操作见表2-3所示。

2.2.7 终止规则

遗传算法是一个反复迭代的过程,每次迭代都要执行适应度计算、复制、交配、变异等操作,直至满足终止条件。通常采用的终止规则主要有以下几种:

(1)规定最大迭代次数N -旦遗传算法的选代次数达到N,则停止操作,输出结果通常 N取 200~500 次。

(2)规定最小的偏差8 对于适应度目标已知的遗传算法,如用方差作为适应度计算的曲线拟和问题,可用最小的偏差8制定终止条件,即:

(3)观察适应度的变化趋势 当发现遗传算法再进化也无法改进解的性能,即适应度函数的值,此时停止计算。即

2.2.8 遗传算法的工作流程

从前面的讲述中可以看出,遗传算法的实施过程包括编码、产生初始群体、计算适应度复制、交配、变异、反复迭代、终止等操作。概括地讲,遗传算法的工作步骤如下:

(1)确定个体的字符串的组成及长度。

(2)随机产生初始群体。

(3)计算群体中个体的适应度,

(4)根据遗传概率,用下述操作产生新群体:①复制:根据复制概率将已有的优良个体复制后添入新群体中,删除劣质个体。2)交配:根据交配概率将选出的父本个体进行重组操作,所产生的新个体进入新群体。③变异:根据变异概率将改变后产生的新个体添入新群体。(5)反复执行(3)和(4),直至达到终止条件,适应度函数值最大的个体为向决策者提供决策支持的方案。具体流程图如图 2-3所示。

2.3 遗传算法的特点及优点

遗传算法作为模仿生物遗传和进化机制的一种最优化方法,与传统的优化算法相比,有着许多鲜明的特点,这些特点是:(1)以决策变量的编码作为运算对象 传统的优化算法往往直接利用决策变量的实际值本身来进行优化计算,但遗传算法不是直接以决策变量的值,而是以决策变量的某种形式编码为运算对象。这种决策变量的编码处理方式,使得我们在优化计算过程中可以借鉴生物学中染色体和基因等概念,可以模仿自然界中生物的遗传和进化等机理,也使得我们可以方便的应用遗传操作算子。特别是对一些无数值概念或很难有数值概念,而只有代码概念的优化问题,编码处理方式更显示出了其独特的优越性。

(2)以目标函数值作为搜索信息 传统的优化算法不仅需要利用目标函数值,而且往往需要日标函数的导数值等其他一些辅助信息才能确定搜索方向。而遗传算法仅使用有日标函数值变换来的适应度函数值,就可确定进一步的搜索方向和搜索范围,无需目标函数的导数值等其他一些辅助信息。这个特征对很多目标函数是无法或很难求导数的函数,或导数不存在的函数的优化问题,以及组合优化问题等,应用遗传算法时就显得比较方便,因为它避开了函数求导这个障碍。再者,直接利用目标函数值或个体适应度,也可使得我们把搜索范围集中到适应度较高部分的搜索空间中,从而提高了搜索效率。

(3)具有隐含的并行性 传统的优化方法往往是从解空间中的一个初始点开始最优解的迭代搜索过程。单个搜索点所提供的搜索信息毕竟不多,所以搜索效率不高,有时甚至使搜索过程陷于局部最优解而停滞不前。遗传算法从由很多个体所组成的一个初始群体开始最优解的搜索过程,而不是从一个单一的个体开始搜索。对这群体所进行的复制、交叉、变异等运算,产生出的乃是新一代群体,在这之中包括了很多群体信息。这些信息可以避免搜索一

些不必搜索的点,所以实际上相当于搜索了更多的点,这是遗传算法所特有的一种隐含并行性。

(4)采用概率搜索技术 很多传统的优化算法往往使用的是确定性的搜索方法,一个搜索点到另一个搜索点的转移有确定的转移方法和转移关系,这种确定性往往可能使得搜索永远达不到最优点,因而也限制了算法的应用范围。而遗传算法属于一种自适应概率搜索技术,其复制、交配、变异等运算都是以一种概率的方式来进行的,从而增加了其搜索过程的灵活性。虽然这种特性也会使群体中产生一些适应度不高的个体,但随着进化过程的进行,新的群体中总会有更多的优良个体产生,实践和理论都证明了在一定条件下遗传算法总是以概率1 收敛于问题的最优解。当然,交配概率和变异概率等参数也会影响算法的搜索效果和搜索效率,所以如何选择遗传算法的参数在其应用中是一个比较重要的问题。而另一方面,与其他一些算法相比,遗传算法的鲁棒性又会使得参数对其搜索效果的影响会尽可能的降低。(5)适于求解复杂问题 正是由于 GA 具有上述特点,所以它最善于搜索求解复杂问题,并可以很快地从这一问题所形成的复杂地域中找出期望值高的区域,最快速找出复杂问题的最优解。值得注意的倒是遗传算法在解决简单问题时显示的效率并不高。图2-4给出了传统方法与遗传算法的比较。

作为一种新的优化技术,遗传算法受到了广泛的注意,它在解优化问题时有以下三大优点:(1)遗传算法对所解的优化问题没有太多的数学要求 由于它的进化特性,它在解的搜索中不需要了解问题的内在性质。遗传算法可以处理任意形式的目标函数和约束,无论是线性还是非线性的,离散的还是连续的,甚至混合的搜索空间。

(2)遗传算法可进行全局搜索 进化算子的各态历经性使得遗传算法能够非常有效地进行概率意义下的全局搜索,而传统的优化方法则是通过讨论邻近点比较而移向较好的点,从而达到收敛的局部搜索过程。这样,只有问题具有凸性时才能找到全局最优解,因为这时任何局部最优解都是全局最优解。

(3)遗传算法有效性高 遗传算法对于各种特殊问题可以提供极大的灵活性来混合构造领域独立的启发式,从而保证算法的有效性。

3 基于遗传算法的种植优化理论分析

前面已经详细介绍了遗传算法的工作原理,本部分将按照遗传算法的操作步骤--参数编码,适应度函数确定,初始群体生成,遗传操作(复制、交配、变异)以及终止规则等,在理论上对农作物种植计划过程中决策支持功能的实现进行研究。

3.1 农作物种植计划问题描述

设农业企业有n个地块,该农业企业所处的季温带允许种植的最大的作物数目为m种作物。如下采用矩阵描述涉及到的与作物有关的亩产量、亩效益、地块的亩数、作物的亩成本、国家计划指令下达的作物数量。这些数据的取得来自于销售信息、生产过程信息、土地信息的综合预测,或者依据现有的数据使用推理机制推理出与作物有关的这些数据。1.年生产计划的目标是:对农业企业的每一个地块,确定今年要种植的作物名、亩数地块号等,从而实现利润最大化。

设农业企业有n个地块,该农业企业所处的季温带允许种植的最大的作物数目为m种作物。如下采用矩阵描述涉及到的与作物有关的亩产量、亩效益、地块的亩数、作物的亩成本国家计划指令下达的作物数量。这些数据的取得来自于销售信息、生产过程信息、土地信息的综合预测,或者依据现有的数据使用推理机制推理出与作物有关的这些数据1.年生产计划的日标是:对农业企业的每一个地块,确定今年要种植的作物名、亩数地块号等,从而实现利润最人化。

2.年生产计划的约束条件是

(1)每一个地块上只能种植一种作物。

(2)水田只能种植水田作物,旱田只能种植早田作物。

(3)需要完成国家计划指令任务。

数学模型描述如下:

设:地块的集合为 D={d,dz,……,d},作物的集合为 W={w,w2.….., wm}(1)作物亩产量矩阵

亩产量矩阵 Pij(n* m)用于描述每种作物在每个地块上的亩产量(斤/亩),其中p 表示第i个地块上第i种作物的亩产量。

(2)作物的经济效益矩阵

经济效益矩阵 B(m)用于描述每种作物的销售价格(元/公斤),其中b,表示第i种作物的销售价格。

(3)地块面积矩阵

地块面积矩阵 A(n)用于描述每个地块可种植作物的亩数(亩),其中a个表示第i个地块的亩数(即地块人小)。

(4)作物的单位成本矩阵

作物的单位成本矩阵 C(m)用于描述种植每种作物所投入的每亩成本(元/亩),其中表示第i种作物的亩成本。

(5)国家指令计划矩阵 S(m)

国家指令计划矩阵 S(m)用于描述国家向农业企业下达的作物上缴的数量(斤),其中,s,表示第i种作物上缴的数量。

(6)解矩阵X(nxm)令矩阵 X= (x)为解矩阵

3.2农作物生产计划问题的编码

应用遗传算法,首先要解决的问题是如何为农作物生产计划的具体问题进行编码。在第二章中已经指出,遗传算法主要是通过遗传操作对群体中具有某种结构形式的个体施加结构重组处理,逐步逼近最优解,所以,遗传算法不能直接处理问题空间的参数,必须把它们转换成遗传空间的由基因按一定结构组成的染色体或个体。

一般来讲,由于遗传算法的鲁棒性,它对编码的要求并不苛刻,除了要遵循第二章提到的三个规范--完整性、健全性、非冗余性以外,还需参考 De Jong 提出的操作性较强的实用编码原则(又称为编码原则)(EdMiler,1996):

编码原则一:有意义积木块编码原则。应使用能易于产生与所求问题相关的且有低阶短定义长度模式的编码方法。

编码原则二:最小字符集编码原则。应使用能使问题得到自然表示或描述的具有最小字符集的编码方案。

第一个编码原则中,模式是指具有某些基因相似性的个体的集合,而具有短定义长度、低阶且适应度较高的模式称为构造优良个体的积木块或基因。这里可以把该编码原则理解成应使用易于生成适应度较高的个体的编码方案。

第二个编码原则说明了我们为何偏爱于使用二进制编码方法的原因,因为它满足这条编码原则的思想要求。事实上,理论分析表明,与其他编码字符集相比,二进制编码方法包含最大的模式数,从而使遗传算法在确定规模的群体中能够处理最多的模式。

对于农作物生产计划的优化问题,首先要对解矩阵进行二进制(0-1)编码,如公式(3-2),其中,每一个行向量要求有且仅有一个元素为1,其余元素为0,若X=1则表示第i个地块上将计划种植第j种作物。

3.3 适应度函数

本研究采用如下3种形式的适应度函数:(1)国家计划任务为无偿形式时的适应度函数

(2)国家计划任务为有偿市场价形式的适应度函数

(3)国家计划任务为有偿非市场价形式的适应度函数

3.4 形成初始群体

遗传算法中,群体规模越大,全局收敛性越好:但群体规模过大,不仅增加遗传运算的时间,而且会使群体形态过于分散,影响搜索效率。当然,群体规模过小也将影响搜索范围,从而得不到最优解。初始群体的规模根据需要(要求分配的时间等),按经验或试验给出。经验上,一般取群体规模为 20~200(陈菊新,2001);由试验结果可知,种群规模一般选取在L~2L之间(EdMiler,1995)(为编码长度)。

大多数学者接受这样一个观点:初始群体应该随机选取。只有随机选取才能达到所有状态的遍历,才能保证最优解在遗传算法的进化中最终得以生存。毫无问,初始群体的随机选取加大了进化的代数,进而,加大了计算空间。因而,一些学者提出应该用其他的一些启发式算法或经验选择一些比较好的染色体(种子)作为初始群体。争论的焦点是:种子的选择有一定的偏见和缺乏代表性。因此可能产生早熟而无法求出最优解。这个问题实际上的结论是“无免费的午餐”(Yoichi Nagata,1998)。一般来讲,初始群体的设定可采取如下的策略:

(1)根据问题固有知识,设法把握最优解所占空间在整个问题空间的分布范围,然后,在此分布范围内设定初始群体。

(2)先随机生成一定数目的个体,然后从中挑出最好的个体加到初始群体中。这种过程不断迭代,直到初始群体中个体数达到了预先确定的规模。

所以初始群体的选取是先根据历年经验产生一部分,其余部分根据定义好的范围随机选取。这样,在初始群体中,既包括对种植计划来说最满意的种子,又达到了所有状态的遍历保证了最优解或准最优解的生存。

3.5 选择操作

遗传算法的选择操作有赌轮选择机制(roulette wheel selection),最佳保留选择机制(elitistmodel),期望值模型选择机制(expected value model), 随机竞争选择机制(stochastictournament),排序选择机制(ranking),排挤方法(crowding model)等多种选择方案。本研究采用带有最佳个体保留的赌轮选择机制,对每一代中的染色体,根据其适应性(评价函数的取之大小)来确定是否被选入下一代。经过选择操作而产生的群体被称为交配池群体。本研究所采用的选择操作算法如下:

3.6 最优个体保存策略

在遗传算法的运行过程中,通过对个体进行交配、变异等遗传操作而不断地产生出新的个体。虽然随着群体的不断进化会产生出越来越多的优良个体,但由于复制、交配、变异等遗传操作的随机性,它们也有可能破坏当前群体中适应度最好的个体。而这却不是我们所希望发生的,因为它会降低群体的平均适应度,并且对遗传算法的运行效率、收敛性都有不利

的影响。所以,我们希望适应度最好的个体要尽可能地保留到下一代群体中。为了达到这个目的,可以使用最优个体保存方法(ElitistModel)来进行优胜劣汰操作,即当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用它来替换掉本代群体中经过交配、变异等遗传操作后所产生的适应度最低的个体,最优个体保存方法的具体操作是:

(1)找出当前群体中适应度最高的个体。

(2)若当前群体中最佳个体的适应度比总的迄今为止的最好个体的适应度还要高,则以当前群体中的最佳个体为新的迄今为止的最好个体。(3)用迄今为止的最好个体替换当前群体中的一个个体最优个体保存方法可视为选择操作的一部分。该策略的实施可保证迄今为止所得到的最优个体不会被交配、变异等遗传操作所破坏,它是遗传算法收敛性的一个重要保证条件。本节将最优个体保存方法加以推广,即在每一代的进化过程中保留多个最优个体不参加交配、变异等遗传运算,而直接将它们复制到下一代群体中。这种方法也称为稳态复制。

3.7 遗传算法参数的选择

进传算法中需要选择的参数主要有个体编码串长度,群体人小N,交换概率P。以及突变概率 P等,这些参数对 GA 性能影响很大。

(1)编码串长度乙 使用二进制编码来表示个体时,编码串长度的选取与问题所要求的求解精度有关:使用浮点数编码来表示个体时,编码串长度与决策变量的个数相等;使用二进制编码来表示个体时,编码串长度儿由问题的编码方式来确定;另外,也可使用变长度的编码来表示个体。

(2)群体大小N 群体大小N表示群体中所含个体的数量。当N 取值较小时,可提高遗传算法的运算速度,但却降低了群体的多样性,有可能会引起遗传算法的早熟现象;而当N取值较大时,又会使得遗传算法的运行效率降低。Schaffer(LiChi,1995)建议的最优参数范围是:N=20~30。周明和孙树栋(S.PSethi,1993)认为N=20~100。为民和席裕庚(祝诗平,2000)等建议N的选择与所求问题的非线性程度相关,非线性越大,N越大,目前常用的参数范围是N=20~200(陈菊新,2001)。本研究采用50个个体的群体(3)交配概率P。交配操作是遗传算法中产生新个体的主要方法,所以交配概率一般应取较大值。但若取值过大的话,它又会破坏群体中的优良模式,对进化运算反而产生不利影响;若取值过小的话,产生新个体的速度又较慢。Schaffer(LiChi,1995)建议的最优参数范围是:P:=0.75~0.95。周明和孙树栋认为P:=0.4~0.99。蒲保兴(张晓勇,1999)认为交配概率 P,可以在 0.5~0.9之间取值。目前常用的参数范围是P=0.5~1.0(陈菊新,2001)。(4)变异概率P。若变异概率 P取值较大的话,虽然能够产生出较多的新个体,但也有可能破坏很多较好的模式,使得遗传算法的性能近似于随机搜索算法的性能;若变异概率P.取值太小的话,则变异操作产生新个体的能力和抑制早熟现象的能力就会较差。Schaffer(LiChi,1995)建议的最优参数范围是P=0.005~0.01。周明和孙树栋认为 P=0.00001~0.1.蒲保兴(张晓勇,1999)认为变异概率P可以在0~0.4之间取值。一般建议的取值范围是

  • 25
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

V建模忠哥V

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值