算法复杂度渐进符号(大O、Ω和θ)的个人理解

这篇博客介绍了算法复杂度的渐进符号O、Ω和θ的含义,分别表示上限、下限和平均界限。通过实例解析了如何构造不等式来确定函数阶数,并指出大O可以表示更高等级的复杂度,而Ω则能表示更低等级的复杂度。 Theta表示最精确的平均界限,要求不等式两边的函数相同。博客还通过软考题举例说明了如何运用这些概念进行问题判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

做软考习题时,碰到了这样的一道题:
【2012年上半年真题】


关于算法复杂度渐进符号(O、Ω、θ),详细解释可参考:
【双语字幕】什么是算法复杂度渐进符号?阿布老师算法课11

这里节选总结了视频的重点内容,并补充了视频中缺失的部分细节、以及我的个人理解:

==================================================

(1)常见函数阶数由低到高排列:

请记住它!
在这里插入图片描述

<

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值