华为昇腾310P 176T算力AI 智能计算模组规格书

目录
品介绍 ...................................................................................................................................... 3
1、产品简介............................................................................................................................. 3
2、产品特性.............................................................................................................................  3
3、应用领域............................................................................................................................. 4
产品规格 ................................................................................................................................... 4
1、AI 模组外观图..................................................................................................................... 4
2、模组结构............................................................................................................................. 4
3、系统框图............................................................................................................................. 5
4、产品规格参数...................................................................................................................... 6
5、电气参数.............................................................................................................................. 7
型号配置 .................................................................................................................................... 8
1、模组常规型号....................................................................................................................... 8
历史版本 ..................................................................................................................................... 8
产品介绍
1、产品简介
昇腾310P模组是基于昇腾 310P 系列 AI 处理器设计而成,可实现图像、视频等多种数据分析
与推理计算。超强的视频编解码能力以及支持 176Tops 的 AI 算力。在边缘侧及端侧的嵌入式计算
领域,有着极高的性价比,具有超强算力、 超高能效、高性能特征检索、安全启动等优势。兼容
COMe 尺寸,扩展性强,应用于机器人、无人机、无人车、工业设备等场景。
产品介绍
1、产品简介
超强运算性能
支持 128 路 1080P@30fps H264/H265 硬件解码
支持 24 路 1080P@30fps H.264/H.265 硬件编码
支持 176TOPs@INT8 算力
高可靠性
兼容 COM Express TYPE 6 尺寸
抗振动,耐冲击
可扩展成 VPX、1U 服务器等结构
丰富外设接口资源
支持 PCIEx16 Lanes ,兼容 x8/x4/x2;PCIe Gen4.0 ,兼容 3.0/2.0/1.0 XGE、SATA、USB 等接口
支持 I2C、 UART、 CAN-FD、SPI、PWM、GPIO 若干等扩展接口
可扩展 5G/4G/WIFI/BT 无线网络方式,为端侧业务部署提供便利。
性能稳定可靠
工作电压:12V
PCIE inference 场景平均功耗 50W,单片最大业务功耗不超过 70W
L4 Drive 场景,单片平均功耗在 65W,最大业务功耗不超过 120W
工作温度:-40℃ ~ 100℃(芯片结温),-40℃ ~ 65℃(模块工作环境)
 
3、应用领域​​​​​​​
基于昇腾310P 模组设计的 AI 智能产品,可根据实际应用需求,可应用于机器人、无人机、无人
车、工业设备等应用场景。

产品规格

2、AI 模组结构


3、系统框图
 
4、产品规格参数

5、电气参数
型号配置
1、模组常规型号
配置
内存
48GByte(可支持定制最大 96GB)

 

 
### 部署YOLOv8模型于华为昇腾平台 #### 准备工作环境 为了在华为昇腾平台上成功部署YOLOv8模型,首先需要准备适当的工作环境。这包括安装必要的软件包以及获取所需的硬件资源。 - 安装依赖库和工具链,确保环境中已配置好Python解释器及其相关开发库。 - 下载并编译适用于昇腾系列处理器的SDK和支持库[^4]。 #### 获取YOLOv8模型权重文件 考虑到网络连接可能不稳定或较慢,在开始之前应当预先下载好YOLOv8模型的`.pt`格式权重文件,并将其放置在一个易于访问的位置。这样可以在后续过程中直接引用本地路径来加载模型,从而提高效率。 ```bash wget -O yolov8n-seg.pt https://example.com/path_to_yolov8_weights # 假设这是官方提供的链接地址 ``` #### 转换模型至适配昇腾架构的形式 由于昇腾AI处理器具有特定的数据表示形式(如INT8),因此有必要将原始浮点型参数转换为目标设备所支持的低精度版本。此过程通常涉及使用ATC (Ascend Tensor Compiler) 工具完成模型离线压缩与优化操作[^1]。 ```bash atc --model=yolov8n-seg.onnx --framework=5 --output=yolov8n-seg --input_format=NCHW --input_type=FP32 --soc_version=Ascend310P3 --insert_op_conf=aipp.cfg ``` > **注意**: 上述命令中的具体选项需依据实际情况调整;特别是关于SOC型号的选择应严格匹配实际使用的昇腾芯片类型。 #### 编写推理程序 编写一段简单的Python脚本来调用经过处理后的YOLOv8模型执行图像分割任务。这里假设已经完成了前面提到的各项准备工作: ```python from mindspore import context, load_checkpoint, export import numpy as np from PIL import Image import time context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") def preprocess(image_path): img = Image.open(image_path).convert('RGB') img_resized = img.resize((640, 640)) img_array = np.array(img_resized)/255. input_data = np.expand_dims(img_array.transpose(2, 0, 1), axis=0).astype(np.float32) return input_data if __name__ == '__main__': model_file = "yolov8n-seg.mindir" net = ... # 加载mindir格式的YOLOv8模型 test_images = ["data/images/huawei.jpg", "data/images/bus.jpg", "data/images/dog.jpg"] for image in test_images: inputs = preprocess(image) start_time = time.time() outputs = net(inputs) end_time = time.time() print(f"Inference Time: {round(end_time-start_time, 4)} seconds.") # 处理输出结果... ``` 上述代码片段展示了如何利用MindSpore框架读取图片数据、对其进行预处理后送入神经网络进行预测计的过程。需要注意的是,此处省略了一些细节实现部分,比如具体的类定义等[^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值