第六周:概念补充

1 偏差和方差

1.1 偏差和方差的定义

一个集成模型(f)在未知数据集(D)上的泛化误差E(f;D),由方差(var),偏差(bais)和噪声(ε)共同决定。
在这里插入图片描述

下面的图像,每个点就是集成算法中的一个基评估器产生的预测值。红色虚线代表着这些预测值的均值,而蓝色的线代表着数据本来的面貌。

  • 偏差:模型的预测值与真实值之间的差异,即每一个红点到蓝线的距离。在集成算法中,每个基评估器都会有自己的偏差,集成评估器的偏差是所有基评估器偏差的均值。模型越精确,偏差越低
  • 方差:反映的是模型每一次输出结果与模型预测值的平均水平之间的误差,即每一个红点到红色虚线的距离,衡量模型的稳定性。模型越稳定,方差越低
    在这里插入图片描述

1.2 模型泛化误差

通常来说,方差和偏差有一个很大,泛化误差都会很大。然而,方差和偏差是此消彼长的,不可能同时达到最小值。这个要怎么理解呢?来看看下面这张图:
在这里插入图片描述

1.3 偏差与方差的权衡

关于解决方差和偏差的问题中:

我们要知道偏差和方差是无法完全避免的,只能尽量减少其影响。

  1. 在避免偏差时,需尽量选择正确的模型,一个非线性问题而我们一直用线性模型去解决,那无论如何,高偏差是无法避免的。
  2. 有了正确的模型,我们还要慎重选择数据集的大小,通常数据集越大越好,但大到数据集已经对整体所有数据有了一定的代表性后,再多的数据已经不能提升模型了,反而会带来计算量的增加。而训练数据太小一定是不好的,这会带来过拟合,模型复杂度太高,方差很大,不同数据集训练出来的模型变化非常大。
  3. 最后,要选择合适的模型复杂度,复杂度高的模型通常对训练数据有很好的拟合能力。

其实在机器学习领域,主要的挑战来自方差。处理高方差的手段有:

  • 降低模型复杂度
  • 减少数据维度;降噪
  • 增加样本数
  • 使用验证集

2 模型正则化

可参照第四周:线性回归.

2.1 L1正则化

所谓的L1正则化,就是在目标函数中加了L1范数这一项。使用L1正则化的模型叫做LASSO回归。

为什么L1正则化具有稀疏性:

所谓稀疏性,说白了就是模型的很多参数是0。通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,很多参数是0,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,即使去掉对模型也没有什么影响,此时我们就可以只关注系数是非零值的特征。

这相当于 对模型进行了一次特征选择,只留下一些比较重要的特征,提高模型的泛化能力,降低过拟合的可能。

从解空间形状来考虑:
在这里插入图片描述
在这里插入图片描述
而如果选择点Q,在直角的顶点上,对应的参数θ1=0,这就体现了稀疏性。因此L1正则化会产生系数模型,好处是应用的特征比较小,模型更简单,运算更快。

由此可见:加入L1正则项相当于倾向将参数向离原点近的方向去压缩。直观上来说,就是加上正则项,参数空间会被缩小,意味着模型的复杂度会变小。

2.2 L2正则化

除了如L1正则化一般,将参数累加以外,很自然地联想到,我们也可以用平方和来做正则项。
在这里插入图片描述

参考:公众号-数据科学家联盟

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值