ComfyUI图生图高清修复讲解

高清修复,也叫图像放大

高清修复两种放大方式

  1. latent(潜在空间)放大
  2. image(像素空间)放大

原理

二者都是在样图的基础上,进行放大算法,进行采样,从而提高原图的分辨率和细腻度。

步骤

  1. latent放大

上传一张图片(像素空间) -> VAE 编码(变潜在空间数据) -> upscale latent(放大) -> ksample采样 -> VAE 解码 -> 生成高清图片

  1. image放大

上传一张图片(像素空间)-> upscale image -> VAE编码(变潜在空间) -> ksample采样 -> VAE 解码 -> 生成高清图片

工作流

我用夸克网盘分享了「ComfyUI教程」,点击链接即可保存。打开「夸克APP」,无需下载在线播放视频,畅享原画5倍速,支持电视投屏。
链接:https://pan.quark.cn/s/274b451a3072

视频讲解

b站视频

https://www.bilibili.com/video/BV1Xvsre4EoH/?vd_source=f7ba66eceb00e4805d1897131c92dd15#reply243098107888

### 使用ComfyUI进行低质量修复的最佳实践 为了有效利用ComfyUI进行低质量修复,可以遵循一系列最佳实践来确保高质量的结果。这些方法不仅依赖于工具本身的功能,还涉及到具体的配置和技术细节。 #### 配置环境与准备数据集 在开始之前,确保已经安装并正确设置了ComfyUI环境[^2]。对于修复任务来说,拥有一个适当的数据集至关重要。该数据集应包含大量高分辨率的原始及其对应的降质版本(如模糊、噪声污染等)。这有助于模型学习到从受损状态恢复至理想状态所需的知识。 #### 构建适合的任务流程 基于ComfyUI的工作流特性,构建专门用于修复的任务管道。此过程可能涉及多个阶段: - **预处理**:对输入像执行标准化操作,比如尺寸调整、颜色空间转换等。 - **增强模块引入**:通过集成先进的像超分技术或其他形式的前处理手段提升源素材的质量基础。 - **核心修复网络设计**:采用性能优越的神经架构作为主要处理器件;考虑到效率因素,在Serverless环境下特别需要注意模型轻量化的设计思路[^1]。 - **后处理优化**:完成初步重建后的微调步骤,例如锐化滤镜应用或是色彩校正。 ```python import comfyui as cui def preprocess_image(image_path): img = cui.load_image(image_path) resized_img = cui.resize(img, (512, 512)) # 假设目标大小为512x512像素 return resized_img def apply_super_resolution(input_tensor): sr_model = cui.get_pretrained_sr_network() enhanced_output = sr_model.predict(input_tensor) return enhanced_output input_img = "path/to/low_quality_image.png" processed_img = preprocess_image(input_img) enhanced_result = apply_super_resolution(processed_img) cui.save_image(enhanced_result, "output/enhanced_high_quality_image.png") ``` #### 训练与评估 当上述流水线搭建完毕之后,则需进入迭代式的训练环节。在此期间,持续监控各项指标的变化趋势,并适时调节编码器和解码器中的参数设置以达到最优效果[^3]。同时也要重视验证集上的表现情况,防止过拟合现象的发。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值