『ACM--算法--KMP』信息竞赛进阶指南--KMP算法(模板)

本文深入讲解了KMP算法,一种高效的字符串匹配算法,由Knuth、Morris和Pratt提出。KMP算法通过预处理模式串,利用匹配失败后的信息减少匹配次数,达到O(m+n)的时间复杂度。文章分享了一段实现KMP算法的代码,帮助读者理解其工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介:
KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt提出的,因此人们称它为克努特—莫里斯—普拉特操作(简称KMP算法)。KMP算法的核心是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的。具体实现就是通过一个next()函数实现,函数本身包含了模式串的局部匹配信息。KMP算法的时间复杂度O(m+n)。

我就不详细展开写了:
博客写的挺好的,我就分享个代码吧。

next[1] = 0;
for (int i = 2, j = 0; i <= n; i++) {
	while (j > 0 && a[i] != a[j+1]) j = next[j];
	if (a[i] == a[j+1]) j++;
	next[i] = j;
}

for (int i = 1, j = 0; i <= m; i++) {
	while (j > 0 && (j == n || b[i] != a[j+1])) j = next[j];
	if (b[i] == a[j+1]) j++;
	f[i] = j;
	// if (f[i] == n),此时就是A在B中的某一次出现
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值