题目描述
给你一个整数数组 cost
,其中 cost[i]
是从楼梯第 i
个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0
或下标为 1
的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
题目分析
这题答题思路我想的是对的,但是错在了推导上。
-
dp数组:
dp[i]
是到达第i层的最低消费 -
递推公式:我们当然知道爬到第i层要选到达前面两层中花费最小的那一个。但是注意,我们这里的dp数组定义的是到达第j层的最低消费,也就是说如果我们要从第j层向上爬,那么还需要支付一个cost[j]的费用。因此,递推公式应该是
dp[i]=min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])
但是我写成了dp[i] = min(dp[i-1], dp[i-2]) + cost[i],这就理解成了第一步是花费的,最后一步是不用花费的。 -
dp数组初始化:
dp[0] = 0; dp[1] = 0;
因为我们可以选择向上爬一个或者两个台阶,也就是说爬到第0层和第1层不要钱(这里是说台阶的下标)。 -
确定遍历顺序:从前向后
cpp代码
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
// dp数组:dp[i]是到达第i层的最低消费
vector<int>dp;
// 递推公式:
// 因为可以选择爬1级或2级,爬到第i级的消费取决于前面两级的最小消费
// dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])
// dp数组初始化
dp.push_back(0);
dp.push_back(0);
// 遍历
for(int i = 2; i <= cost.size(); i++){
dp.push_back(min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]));
}
return dp[dp.size()-1];
}
};