sklearn中的coef_和intercept_

本文介绍了线性回归和逻辑回归的基本概念。线性回归用于连续变量的预测,目标函数包含权重系数和截距。而逻辑回归在加入sigmoid激活函数后转为分类任务。模型的coef_和intercept_分别对应权重和截距参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于线性回归和逻辑回归,其目标函数为:
g(x) = w1 * x1 +w2 * x2 +w3x3 + w4 x4 +w0
如果有激活函数sigmoid,增加非线形变化,则为分类,即逻辑回归
如果没有激活函数,则为回归
对于这样的线型函数,都会有coef_和intercept,如:

lr=LogisticRegression()
lr.coef_
lr.intercept_

coef_和intercept_都是模型参数,即为w

coef_为w1到w4

intercept_为w0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值