在机器学习中,“coef” 通常是指模型的系数(coefficients)。这些系数用于线性模型(如线性回归或逻辑回归)中的特征权重。
在 Scikit-Learn 中,训练完模型后,您可以通过访问模型对象的 “coef_” 属性来获取这些系数。具体的属性名称可能会因模型类型而异,但通常以下划线结尾(例如,“coef_”、“feature_importances_” 等)。
以下是一个示例,展示如何获取线性回归模型的系数:
from sklearn.linear_model import LinearRegression
# 创建并训练线性回归模型
model = LinearRegression()
model.fit(X, y)
# 获取系数
coefficients = model.coef_
# 打印系数
print(coefficients)
请注意,上述示例中的 “X” 和 “y” 分别代表输入特征和目标变量。您需要将其替换为您实际使用的数据。