通信线路的敷设问题

该博客探讨了在13个城市间建立通信网络的最小成本问题,涉及网的最小生成树的概念。主要内容包括使用邻接矩阵和邻接链表存储图,以及应用Prim和Kruskal算法来求解最小生成树,并计算总造价。此外,还设计了一个包含相关功能的菜单系统。
摘要由CSDN通过智能技术生成

通信线路的敷设问题

问题描述

若要在下图中的13个城市之间建设通信网络,只需要敷设12条线路即可,边上的数字为两个城市之间建设线路的花费,单位:拾万元。如何以最低的经济代价建设这个通信网,是一个网的最小生成树的问题。

建设通信网络

基本要求

⑴ 以邻接矩阵方式保存图的数据,并以邻接链表的形式输出图的数据;
⑵ 以边表方式保存图的数据,并以邻接矩阵方式的形式输出图的数据;
⑶ 用Prim算法求网的最小生成树,并以邻接链表的形式显示所求得的最小生成树,然后计算敷设相应的通信网的总造价;
⑷ 用Kruskal算法求网的最小生成树,并以邻接链表的形式显示所求得的最小生成树,然后计算敷设相应的通信网的总造价;
⑸ 整个应用设计成一个菜单,具有上述功能要求和退出系统的基本的功能;

main.c
#include <stdio.h>
#include <stdlib.h>

typedef int DataType;
typedef int VerT;
#define MaxSize 50
#define MAX_VERtEX_NUM 20
#define MaxVertices 20
#define MaxEdges 50
#define MaxWeight 10000
#define MaxQueueSize 50

#include "AdjMGraph.h"
#include "AdjMGraphCreate.h"//生成、存储邻接矩阵
#include "AdjLGraph.h"
#include"AdjLGraphCreate.h"//生成邻接表
#include "Prim.h"//prim算法
#include"Kruskal.h"//Kruskal算法
Edge *ListSort(Edge *head);
void putout(int a[], int n, RowColWeight mintree[], int e);
void frist(int a[], int n, RowColWeight rcw[], int e);
void two(int a[], int n, RowColWeight rcw[], int e);
void three(int a[], int n, RowColWeight rcw[], int e);
void four(int a[], int n, RowColWeight rcw[], int e);
void function_select(int a[], int n, RowColWeight rcw[], int e);
//链表排序函数,用于矩阵输出
Edge *ListSort(Edge *head){
   //排序
	Edge *p1, *p2, *pre;
	p1 = head;
	head = (Edge *)malloc(sizeof(Edge));
	head->next = p1;
	if (p1 == NULL){
   
		return p1;
	}
	else{
   
		p2 = p1->next;   //保持p2是p1的后继结点,以保证不断链
		p1->next = NULL;
		p1 = p2;
		while (p1){
   
			p2 = p1->next;  //保存p2的后继结点指针
			pre = head;
			while (pre->next != NULL && pre->next->dest < p1->dest)
			{
   
				pre = pre->next;
			}
			p1->next = pre->next;
			pre->next = p1;

			p1 = p2;  //扫描剩下的结点
		}
	}
	return (head->next);
}

//第一题:以邻接矩阵方式保存图的数据,并以邻接链表的形式输出图的数据
void frist(int a[], int n, RowColWeight rcw[], int e){
   
	//邻接矩阵
	int i, j;
	AdjMWGraph g;
	CreatGraph(&g, a, n, rcw, e);
	printf("顶点集合为:");
	for (i = 0; i < g.Vertices.size; i++)
		printf("%d   ", g.Vertices.list[i]);
	printf("\n");
	printf("以邻接矩阵方式保存图的数据:共%d个顶点 ,有%d条边\n\n\n", g.Vertices.size, g.numOfEdges/2);
	printf("以邻接表输出为:\n");
	for (i = 0; i < g.Vertices.size; i++)
	{
   
		printf("[%-2d|*]", g.Vertices.list[i]);
		for (j = 0; j < g.Vertices.size; j++)
		{
   
			if (g.edge[i][j] == 10000 || i == j)
				;
			else{
   
				printf("->");
				printf("[%-2d|%-3d|*]", j + 1, g.edge[i][j]);
			}
		}
		printf("\n");
	}
}

//第二题:以边表方式保存图的数据,并以邻接矩阵方式的形式输出图的数据
void two(int a[], int n, RowColWeight rcw[], int e){
   
	//邻接表
	int i, j;
	AdjLGraph g1;
	LCreatGraph(&g1, a, n, rcw, e);
	printf("以邻接矩阵方式保存图的数据:顶点个数:%d   边个数:%d\n\n\n", g1.numOfVerts, g1.numOfEdges / 2);
	Edge *p;
	printf("以邻接矩阵输出为:\n");
	for (i = 0; i < g1.numOfVerts; i++)
	{
   
		if (i == 0)
			printf("┎  ");
		else if (i == g1.numOfVerts - 1)
			printf("┖  ");
		else
			printf("┃  ");
		g1.a[i].adj = ListSort(g1.a[i].adj);//对链表进行排序,以方便矩阵输出
		p = g1.a[i].adj;
		//矩阵输出
		for (j = 0; j < g1.numOfVerts; j++){
   
			if (p == NULL){
   
				printf("∞  ");
			}
			else{
   
			int m = p->dest;
			//如果结点的dest值等于j,就输出权值
			if (m == j){
   
				printf("%-3d ", p->weight);
				p = p->next;
			}			
			else
			    printf("∞  ");
			}
		}
		if (i == 0)
			printf("┒");
		else if (i == g1.numOfVerts - 1)
			printf("┚");
		else
			printf("┃");
		printf("\n");
	}
	AdjDestroy(&g1);
}

//第三题:用Prim算法求网的最小生成树,并以邻接链表的形式显示所求得的最小生成树,然后计算敷设相应的通信网的总造价;
void three(int a[], int n, RowColWeight rcw[], int e){
   
	AdjMWGraph g;
	int num = 0;
	printf("Prim算法求网的最小生成树…………\n\n\n");
	RowColWeight mintree[MaxEdges];
	MinSpanTree closeVertex[13];
	CreatGraph(&g, a, n, rcw, e);
	
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值