吴恩达深度学习 1.2 神经网络和深度学习-神经网络基础

1) 知识点:逻辑回归

  • 分类模型和回归模型。
  • 将线性回归结果用sigmoid函数映射到[0,1]区间。
  • 损失函数,即标签预测值与标签实际值之间差值的总和。考虑到损失函数选择凸函数才可以优化, L(\hat{y}, y)=-(y \log \hat{y}+(1-y) \log (1-\hat{y}))
  • 梯度下降。基本原理为,寻找函数的极小值,应让函数的每个变量沿着该变量的函数偏导数的方向逐渐下降。由各变量函数偏导数构成的向量,即函数的梯度。
  • 逻辑回归的梯度下降法,

2)编程实例:识别图片是不是猫

实现思路:

  • 原始图片数据的表示方式为(64,64,3,m),64是点阵数,3是RGB,m为图片数量。将数据降维,表示为(64*64*3,m)维度,便于用矩阵运算。
  • 构造损失函数。参照知识点中的分析,将wx+b进行sigmoid()运算,获取y的估计值。将y估计值和y代入损失函数公式L(\hat{y}, y)=-(y \log \hat{y}+(1-y) \log (1-\hat{y}))
  • 用梯度下降法求解损失函数。dw、db参考知识点中的推导结果。 
  • 用求解的结果(w、b)预测测试集中的图片,并且计算准确率。
  • 调整学习率,感受学习率对学习效果的影响。
#引入包
import numpy as np
import matplotlib.pyplot as plt
import h5py
from lr_utils import load_dataset
#加载数据,训练集、训练集标签、测试集、测试集标签,数据和加载数据函数由吴恩达老师提供,网上可下载
train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = load_dataset()
#绘图,看一下训练集第25张图片长啥样
index = 25
plt.imshow(train_set_x_orig[index])
#print("train_set_y=" + str(train_set_y)) #你也可以看一下训练集里面的标签是什么样的。
<matplotlib.image.AxesImage at 0x112cca710>

​​​​​​​

#打印出当前的训练标签值
#np.squeeze 把元素个数为1的维度去掉
#使用np.squeeze的目的是压缩维度,【未压缩】train_set_y[:,index]的值为[1] , 【压缩后】np.squeeze(train_set_y[:,index])的值为1

#只有压缩后的值才能进行解码操作
print("y=" + str(train_set_y[:,index]) + ", it's a " + classes[np.squeeze(train_set_y[:,index])].decode("utf-8") + "' picture")
y=[1], it's a cat' picture
m_train = train_set_y.shape[1] #训练集里图片的数量。
m_test = test_set_y.shape[1] #测试集里图片的数量。
num_px = train_set_x_orig.shape[1] #训练、测试集里面的图片的宽度和高度(均为64x64)。

#现在看一看我们加载的东西的具体情况
print ("训练集的数量: m_train = " + str(m_train))
print ("测试集的数量 : m_test = " + str(m_test))
print ("每张图片的宽/高 : num_px = " + str(num_px))
print ("每张图片的大小 : (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("训练集_图片的维数 : " + str(train_set_x_orig.shape))
print ("训练集_标签的维数 : " + str(train_set_y.shape))
print ("测试集_图片的维数: " + str(test_set_x_orig.shape))
print ("测试集_标签的维数: " + str(test_set_y.shape))

print("train_set_x_orig训练集_图片数据啥样"+str(train_set_x_orig.shape))
print("train_set_y训练集_标签数据啥样"+str(train_set_y.shape))
训练集的数量: m_train = 209
测试集的数量 : m_test = 50
每张图片的宽/高 : num_px = 64
每张图片的大小 : (64, 64, 3)
训练集_图片的维数 : (209, 64, 64, 3)
训练集_标签的维数 : (1, 209)
测试集_图片的维数: (50, 64, 64, 3)
测试集_标签的维数: (1, 50)
train_set_x_orig训练集_图片数据啥样(209, 64, 64, 3)
train_set_y训练集_标签数据啥样(1, 209)
#数据降到2维,方便处理
#X_flatten = X.reshape(X.shape [0],-1).T #X.T是X的转置
#将训练集的维度降低并转置。
train_set_x_flatten  = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
#将测试集的维度降低并转置。
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

print ("训练集降维最后的维度: " + str(train_set_x_flatten.shape));
print ("训练集_标签的维数 : " + str(train_set_y.shape));
print ("测试集降维之后的维度: " + str(test_set_x_flatten.shape));
print ("测试集_标签的维数 : " + str(test_set_y.shape));
训练集降维最后的维度: (12288, 209)
训练集_标签的维数 : (1, 209)
测试集降维之后的维度: (12288, 50)
测试集_标签的维数 : (1, 50)
#RGB值在0至255之彰,将其标准化到[0,1]
train_set_x = train_set_x_flatten / 255
test_set_x = test_set_x_flatten / 255
def sigmoid(z):
    """
    参数:
        z  - 任何大小的标量或numpy数组。
    
    返回:
        s  -  sigmoid(z)
    """
    s = 1 / (1 + np.exp(-z))
    return s
#测试sigmoid()
print("====================测试sigmoid====================")
print ("sigmoid(0) = " + str(sigmoid(0)))
print ("sigmoid(9.2) = " + str(sigmoid(9.2)))
print ("sigmoid(-9.3) = " + str(sigmoid(-9.2)))

====================测试sigmoid====================
sigmoid(0) = 0.5
sigmoid(9.2) = 0.9998989708060922
sigmoid(-9.3) = 0.00010102919390777289
#初始化w b
def initialize_with_zeros(dim):
    """
        此函数为w创建一个维度为(dim,1)的0向量,并将b初始化为0。
        
        参数:
            dim  - 我们想要的w矢量的大小(或者这种情况下的参数数量)
        
        返回:
            w  - 维度为(dim,1)的初始化向量。
            b  - 初始化的标量(对应于偏差)
    """
    w = np.zeros(shape = (dim,1))
    b = 0
    #使用断言来确保我要的数据是正确的
    assert(w.shape == (dim, 1)) #w的维度是(dim,1)
    assert(isinstance(b, float) or isinstance(b, int)) #b的类型是float或者是int
    
    print("w.shape="+str(w.shape))
    print("w="+str(w))
    print("b="+str(b));
    
    return (w , b)
initialize_with_zeros(3)
w.shape=(3, 1)
w=[[0.]
 [0.]
 [0.]]
b=0

Out[52]:

(array([[0.],
        [0.],
        [0.]]), 0)
def propagate(w, b, X, Y):
    """
        实现前向和后向传播的成本函数及其梯度。
        参数:
            w  - 权重,大小不等的数组(num_px * num_px * 3,1)
            b  - 偏差,一个标量
            X  - 矩阵类型为(num_px * num_px * 3,训练数量)
            Y  - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据数量)

        返回:
            cost- 逻辑回归的负对数似然成本
            dw  - 相对于w的损失梯度,因此与w相同的形状
            db  - 相对于b的损失梯度,因此与b的形状相同
    """
    m = X.shape[1]
    #print("m="+str(m));

#m=X.shape[1]
    
    #正向传播
    #A = sigmoid(np.dot(w.T,X) + b)
    A=sigmoid(np.dot(w.T,X)+b)
    
    #损失函数
    cost = (-1/m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A))) #计算成本,参考逻辑回归损失函数知识点。
    
    #反向传播
    dw = (1 / m) * np.dot(X, (A - Y).T) #参考知识点中的求导公式。
    db = (1 / m) * np.sum(A - Y) #请参考知识点中的求导公式。
	
	#使用断言确保我的数据是正确的
    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)
    assert(cost.shape == ())
    
    #创建一个字典,把dw和db保存起来。
    grads = {
                "dw": dw,
                "db": db
             }
    return (grads , cost)

#测试一下propagate
print("====================测试propagate====================")
#初始化一些参数
w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1,2], [3,4]]), np.array([[1, 0]])
grads, cost = propagate(w, b, X, Y)
print ("dw = " + str(grads["dw"]))
print ("db = " + str(grads["db"]))
print ("cost = " + str(cost))


    
====================测试propagate====================
m=2
dw = [[0.99993216]
 [1.99980262]]
db = 0.49993523062470574
cost = 6.000064773192205
def optimize(w , b , X , Y , num_iterations , learning_rate , print_cost = False):
    """
    此函数通过运行梯度下降算法来优化w和b
    
    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 维度为(num_px * num_px * 3,训练数据的数量)的数组。
        Y  - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据的数量)
        num_iterations  - 优化循环的迭代次数
        learning_rate  - 梯度下降更新规则的学习率
        print_cost  - 每100步打印一次损失值
    
    返回:
        params  - 包含权重w和偏差b的字典
        grads  - 包含权重和偏差相对于成本函数的梯度的字典
        成本 - 优化期间计算的所有成本列表,将用于绘制学习曲线。
    
    提示:
    我们需要写下两个步骤并遍历它们:
        1)计算当前参数的成本和梯度,使用propagate()。
        2)使用w和b的梯度下降法则更新参数。
    """
    
    costs = []
    
    for i in range(num_iterations):
        
        grads, cost = propagate(w, b, X, Y)
        
        #求导
        dw = grads["dw"]
        db = grads["db"]
        
        #梯度下降
        w = w - learning_rate * dw
        b = b - learning_rate * db
        
        #记录成本
        if i % 100 == 0:
            costs.append(cost)
        #打印成本数据
        if (print_cost) and (i % 100 == 0):
            print("迭代的次数: %i , 误差值: %f" % (i,cost))
        
    params  = {
                "w" : w,
                "b" : b }
    grads = {
            "dw": dw,
            "db": db } 
    return (params , grads , costs)
#测试optimize
print("====================测试optimize====================")
w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1,2], [3,4]]), np.array([[1, 0]])
params , grads , costs = optimize(w , b , X , Y , num_iterations=100 , learning_rate = 0.009 , print_cost = False)
print ("w = " + str(params["w"]))
print ("b = " + str(params["b"]))
print ("dw = " + str(grads["dw"]))
print ("db = " + str(grads["db"]))

====================测试optimize====================
w = [[0.1124579 ]
 [0.23106775]]
b = 1.5593049248448891
dw = [[0.90158428]
 [1.76250842]]
db = 0.4304620716786828
def predict(w , b , X ):
    """
    使用学习逻辑回归参数logistic (w,b)预测标签是0还是1,
    
    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 维度为(num_px * num_px * 3,训练数据的数量)的数据
    
    返回:
        Y_prediction  - 包含X中所有图片的所有预测【0 | 1】的一个numpy数组(向量)
    
    """
    
    m  = X.shape[1] #图片的数量
    Y_prediction = np.zeros((1,m)) 
    w = w.reshape(X.shape[0],1)  #图片的元素个数
    
    #计预测猫在图片中出现的概率
    A = sigmoid(np.dot(w.T , X) + b)
    print("A.shape="+str(A.shape))
    #图片数量
    for i in range(A.shape[1]):
        #将概率a [0,i]转换为实际预测p [0,i]
        Y_prediction[0,i] = 1 if A[0,i] > 0.5 else 0
    #使用断言
    assert(Y_prediction.shape == (1,m))
    
    return Y_prediction
#测试predict
print("====================测试predict====================")
w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1,2], [3,4]]), np.array([[1, 0]])
print("predictions = " + str(predict(w, b, X)))

====================测试predict====================
A.shape=(1, 2)
predictions = [[1. 1.]]
def model(X_train , Y_train , X_test , Y_test , num_iterations = 2000 , learning_rate = 0.5 , print_cost = False):
    """
    通过调用之前实现的函数来构建逻辑回归模型
    
    参数:
        X_train  - numpy的数组,维度为(num_px * num_px * 3,m_train)的训练集
        Y_train  - numpy的数组,维度为(1,m_train)(矢量)的训练标签集
        X_test   - numpy的数组,维度为(num_px * num_px * 3,m_test)的测试集
        Y_test   - numpy的数组,维度为(1,m_test)的(向量)的测试标签集
        num_iterations  - 表示用于优化参数的迭代次数的超参数
        learning_rate  - 表示optimize()更新规则中使用的学习速率的超参数
        print_cost  - 设置为true以每100次迭代打印成本
    
    返回:
        d  - 包含有关模型信息的字典。
    """
    
    #以每个图片的元素个数初始化w,即权重个数和图片元素个数相同,初始化b为0
    w , b = initialize_with_zeros(X_train.shape[0])
    
    #梯度下降法
    parameters , grads , costs = optimize(w , b , X_train , Y_train,num_iterations , learning_rate , print_cost)
    
    #从字典“参数”中检索参数w和b
    w , b = parameters["w"] , parameters["b"]
    
    #预测测试/训练集的例子
    Y_prediction_test = predict(w , b, X_test)
    Y_prediction_train = predict(w , b, X_train)
    
    #打印训练后的准确性
    print("训练集准确性:"  , format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100) ,"%")
    print("测试集准确性:"  , format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100) ,"%")
    
    d = {
            "costs" : costs,
            "Y_prediction_test" : Y_prediction_test,
            "Y_prediciton_train" : Y_prediction_train,
            "w" : w,
            "b" : b,
            "learning_rate" : learning_rate,
            "num_iterations" : num_iterations }
    return d
print("====================测试model====================")     
#这里加载的是真实的数据,请参见上面的代码部分。
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)

====================测试model====================
w.shape=(12288, 1)
w=[[0.]
 [0.]
 [0.]
 ...
 [0.]
 [0.]
 [0.]]
b=0
迭代的次数: 0 , 误差值: 0.693147
迭代的次数: 100 , 误差值: 0.584508
迭代的次数: 200 , 误差值: 0.466949
迭代的次数: 300 , 误差值: 0.376007
迭代的次数: 400 , 误差值: 0.331463
迭代的次数: 500 , 误差值: 0.303273
迭代的次数: 600 , 误差值: 0.279880
迭代的次数: 700 , 误差值: 0.260042
迭代的次数: 800 , 误差值: 0.242941
迭代的次数: 900 , 误差值: 0.228004
迭代的次数: 1000 , 误差值: 0.214820
迭代的次数: 1100 , 误差值: 0.203078
迭代的次数: 1200 , 误差值: 0.192544
迭代的次数: 1300 , 误差值: 0.183033
迭代的次数: 1400 , 误差值: 0.174399
迭代的次数: 1500 , 误差值: 0.166521
迭代的次数: 1600 , 误差值: 0.159305
迭代的次数: 1700 , 误差值: 0.152667
迭代的次数: 1800 , 误差值: 0.146542
迭代的次数: 1900 , 误差值: 0.140872
A.shape=(1, 50)
A.shape=(1, 209)
训练集准确性: 99.04306220095694 %
测试集准确性: 70.0 %
#绘制图,展示损失函数下降趋势
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()

#调整学习率参数,看看学习效率有没有差别
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
    print ("learning rate is: " + str(i))
    models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
    print ('\n' + "-------------------------------------------------------" + '\n')

for i in learning_rates:
    plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))

plt.ylabel('cost')
plt.xlabel('iterations')

legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()
learning rate is: 0.01
w.shape=(12288, 1)
w=[[0.]
 [0.]
 [0.]
 ...
 [0.]
 [0.]
 [0.]]
b=0
A.shape=(1, 50)
A.shape=(1, 209)
训练集准确性: 99.52153110047847 %
测试集准确性: 68.0 %

-------------------------------------------------------

learning rate is: 0.001
w.shape=(12288, 1)
w=[[0.]
 [0.]
 [0.]
 ...
 [0.]
 [0.]
 [0.]]
b=0
A.shape=(1, 50)
A.shape=(1, 209)
训练集准确性: 88.99521531100478 %
测试集准确性: 64.0 %

-------------------------------------------------------

learning rate is: 0.0001
w.shape=(12288, 1)
w=[[0.]
 [0.]
 [0.]
 ...
 [0.]
 [0.]
 [0.]]
b=0
A.shape=(1, 50)
A.shape=(1, 209)
训练集准确性: 68.42105263157895 %
测试集准确性: 36.0 %

-------------------------------------------------------

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值