RAPPOR 微微学习

RAPPOR是一种在不侵犯用户隐私的情况下收集数据的方法,它使用随机响应和两层随机化来实现差分隐私。在谷歌中,RAPPOR被用来收集如默认主页和搜索引擎等信息,同时通过添加噪声来保护用户隐私。RAPPOR算法包括使用Bloom Filter处理数据碰撞,以及应对成长中的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RAPPOR: Utilizing Large-Scale RAndomized Response at Google

参考视频

源码
image-20211230153258937

1. 背景

希望收集用户使用的默认主页和搜索引擎,但同时不涉及用户的个人隐私

Metaphor for RAPPOR

Mona lisa 举例

一副图像由多个独立的信息组成,就如同我们的统计信息来自于多个独立的统计个体

在这里插入图片描述

如果不加以噪声,可能会导致隐私问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值