李航《统计学习方法》第2版 第6章 Python编程逻辑斯谛回归与最大熵模型 实现mnist数据集分类

本文介绍了如何使用Python编程实现李航《统计学习方法》第2版中第6章的逻辑斯谛回归模型和最大熵模型。通过梯度下降算法进行学习,对MNIST数据集的csv格式进行分类。数据集链接已提供。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(参考深度之眼dodo老师代码,代码注释中有老师博客地址)


逻辑斯谛回归模型(学习算法:梯度下降)


# coding=utf-8
# Author:Dodo
# Date:2018-11-27
# Email:lvtengchao@pku.edu.cn
# Blog:www.pkudodo.com

'''
数据集:Mnist
训练集数量:60000
测试集数量:10000
------------------------------
运行结果:
    正确率:98.91%
    运行时长:59s
'''

import time
import numpy 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值