[Python嗯~机器学习]---最大熵模型和多分类

最大熵模型和多分类

熵可以看做是用来描述信息量的。最大熵模型属于运用最大熵原理的多分类模型。

熵是随机变量不确定性的度量,不确定性越大,熵越大。

给定一定条件的最大熵:
在给定期望和方差的基础上,均匀分布的熵最大。


带约束的极值问题,用拉格朗日函数来解决。

最大熵模型


给定约束条件的求极值问题,用拉格朗日函数函数求解。

总结:



最大熵模型和logistic回归:


逻辑回归就是在给定情况之下,熵最大的一种分类。

我们从最大熵的思想出发得出的最大熵模型,最后的最大化求解就是在求P(y|x)的对数似然最大化。逻辑回归也是在求条件概率分布关于样本数据的对数似然最大化。二者唯一的不同就是条件概率分布的表示形式不同

逻辑回归是最大熵模型的一种特殊情况。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值