搜广推 知识脉络整理

本文介绍了推荐系统出现的原因及其五个关键环节:嵌入、召回、粗排、精排和重排,详细阐述各环节任务及常用模型,如双塔、FM、协同过滤等,旨在梳理深度学习在推荐系统的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

😄 开始 搜广推 的学习~ 本节我先来理清要学的知识和模型,然后后面我整理好各模型的讲解再在本文对应位置加上超链接。

一、推荐系统为何出现?

  • 用户:在用户需求并不十分明确的情况下进行信息的过滤,与搜索系统相比,推荐系统更多的利用用户的各类历史信息猜测其可能喜欢的内容。
  • 公司:解决产品能够最大限度地吸引用户,留存用户,增长用户黏性,提高用户转化率,从而达到公司商目标连续增长的目的。

二、推荐系统的5个环节(各环节的任务+各环节常用模型)?

在这里插入图片描述

1嵌入、2召回、3粗排、4精排、5重排
在这里插入图片描述

1、嵌入

  • 解释:刚采集到的原始 user 与 item

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值