Sigmoid函数介绍

Sigmoid函数常被用作神经网络的激活函数,将实数映射到0,1区间,适合二分类问题。尽管平滑易求导,但计算量大且易导致梯度消失,影响深层网络训练。在逻辑回归中,Sigmoid用于将线性输出转换为概率。其优缺点、工作原理和在二分类问题中的应用在此进行详细阐述。" 86568458,8339499,使用Adobe Dreamweaver创建HTML-CSS-JS模型,"['前端开发', 'HTML', 'CSS', 'JavaScript', 'Adobe Dreamweaver']
摘要由CSDN通过智能技术生成

因为在神经网络数据练习中sigmoid经常用作二分类,我就当做笔记在这里记录一下sigmod函数。
前提:Sigmoid函数是一个在生物学中常见的S型函数,也称为S型生长曲线。
在信息科学中,由于其单增以及反函数单增等性质,Sigmoid函数常被用作神经网络的激活函数,将变量映射到0,1之间。

简介

sigmoid函数也叫Logistic函数,用于隐层神经元输出,取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。在特征相差比较复杂或是相差不是特别大时效果比较好。Sigmoid作为激活函数有以下优缺点:

  1. 优点:平滑、易于求导
  2. 缺点:激活函数计算量大,反向传播求误差梯度时,求导涉及除法;反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。

Sigmoid函数由下列公式定义
在这里插入图片描述

其对x的导数可以用自身表示:
在这里插入图片描述

Sigmoid函数的图形如S曲线

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值