商务统计_9 数值描述度量 - 离散程度

离散程度是统计分析中的重要概念,用于衡量数据的分散程度。极差是最简单的度量方式,但仅反映两端差异;平均离差考虑了所有数据点,但计算时使用了绝对值;方差和标准差是更常用的度量,标准差是方差的平方根,更直观易懂;离散系数则是一个无单位的相对指标,用于比较不同平均值或计量单位的数据分散程度。
摘要由CSDN通过智能技术生成

目录

  • 离散程度
    • 极差
    • 平均离差
    • 方差 & 标准差
    • 离散系数


离散程度

又称变异程度。
集中趋势所描述的是数据集分布的中心、或一般水平的代表值。对于总体分布的分析,只有这一维度的分析显然不够。

1. 极差

又称全距,等于一组数据中最大值 - 最小值,即 R = x m a x − x m i n R=x_{max}-x_{min} R=xmaxxmin
说明:

  • 描述离散程度最简单的测度值,且易于理解。
  • 只反映两极端变量值的差异范围,不反映各个变量值的变异程度。
  • 质量管理中,利用极差设置“公差”,制订产品质量允许的变化范围。
2. 平均离差

一组数据中,各变量值与均值之差的绝对值之和的平均值。

  • 简单
    未分组的数据, M D = ∑ i = 1 n ∣ x i − x ˉ ∣ n M_D=\frac{\displaystyle\sum^{n}_{i=1}{|x_i-\bar{x}|}}{n} MD=ni=1nxixˉ
  • 加权
    已分组数据, M D = ∑ i = 1 n ∣ x i − x ˉ ∣ f i ∑ f M_D=\frac{\displaystyle\sum^{n}_{i=1}{|x_i-\bar{x}|f_i}}{\sum{f}} MD=fi=1nxixˉfi

说明:

  • 在可比的情况下,平均离差值越大,平均值的代表性越差,即该组数据越分散。
  • 使用受限,由于平均离差的计算采用了绝对值的离差形式假定。
3. 方差 & 标准差

方差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值