目录
- 离散程度
- 极差
- 平均离差
- 方差 & 标准差
- 离散系数
离散程度
又称变异程度。
集中趋势所描述的是数据集分布的中心、或一般水平的代表值。对于总体分布的分析,只有这一维度的分析显然不够。
1. 极差
又称全距,等于一组数据中最大值 - 最小值,即 R = x m a x − x m i n R=x_{max}-x_{min} R=xmax−xmin。
说明:
- 描述离散程度最简单的测度值,且易于理解。
- 只反映两极端变量值的差异范围,不反映各个变量值的变异程度。
- 质量管理中,利用极差设置“公差”,制订产品质量允许的变化范围。
2. 平均离差
一组数据中,各变量值与均值之差的绝对值之和的平均值。
- 简单
未分组的数据, M D = ∑ i = 1 n ∣ x i − x ˉ ∣ n M_D=\frac{\displaystyle\sum^{n}_{i=1}{|x_i-\bar{x}|}}{n} MD=ni=1∑n∣xi−xˉ∣ - 加权
已分组数据, M D = ∑ i = 1 n ∣ x i − x ˉ ∣ f i ∑ f M_D=\frac{\displaystyle\sum^{n}_{i=1}{|x_i-\bar{x}|f_i}}{\sum{f}} MD=∑fi=1∑n∣xi−xˉ∣fi
说明:
- 在可比的情况下,平均离差值越大,平均值的代表性越差,即该组数据越分散。
- 使用受限,由于平均离差的计算采用了绝对值的离差形式假定。
3. 方差 & 标准差
方差