python数据处理

这篇博客介绍了使用Python进行数据处理的基本操作,包括数据导入导出、列表操作等。讲解了如何处理CSV数据,如导入导出、缺失值处理,以及如何进行列表操作,如删除列、分列、计算列间运算、删除重复行、改变列顺序、数据分列到行等。此外,还探讨了Pandas的数据匹配方法,如内连接、左连接、右连接和外连接,以及如何筛选和统计数据,修改列名和进行groupby聚合操作。
摘要由CSDN通过智能技术生成

基本操作

python进行数据处理的一系列基本操作

数据导入导出

  1. 导入pandas库
import pandas as pd
  1. 导入csv格式的数据
#error_bad_lines忽略存在错误的行
df = pd.read_csv('test.csv',error_bad_lines=False)
  1. 写出csv格式的数据
df.to_csv('final.csv', index=False)
  1. 读取csv时,由于缺失值引起的浮点转换问题
pd.read_csv('test.csv')

这样会对字符串型的数据,加上.0的浮点处理,例如Id类型的数据

但是,如果你告诉pandas你想要有缺失值的新实验整数,即可解决该问题:

pd.read_csv('test.csv', dtype={
   'a': 'Int64'})

列表操作

  1. 删除指定列
df=df.drop(['D0401b','D_0'],axis=1)
  1. 分列
#先将字段变为字符串形式,再按照分
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值