二次无约束二值优化模型(The Quadratic Unconstrained Binary Optimization(QUBO) model)

(参考文献:Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models)

一般形式

The Quadratic Unconstrained Binary Optimization model (QUBO)
在这里插入图片描述

根据二元的特性,可以将线性部分转化为二次部分

The linear part can be transformed into the quadratic part by this equation

在这里插入图片描述

对于有约束的优化问题,可以引入激活函数

As for constrained models, can introduce quadratic penalties
在这里插入图片描述
在这里插入图片描述

对于penalty value的取值

For the selection of penalty value, a penalty value that is too large can impede the solution process as the penalty terms overwhelm the original objective function information, making it difficult to distinguish the quality of one solution from another. On the other hand, a penalty value that is too small jeopardizes the search for feasible solutions. Taking P to be some percentage (75–150%) of this estimate is often a good place to start. For problems with a linear objective function, the scalar P (with respect to transformation#2) can be chosen as small as the largest objective function coefficient.

等式约束

A general purpose approach

在这里插入图片描述
在这里插入图片描述

不等式约束——引入松弛变量

As for problems with inequality constraints, we can always be put in this form by including slack variables and then representing the slack variables by a binary expansion.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值