拉普拉斯矩阵(Laplacian matrix)及其变体

拉普拉斯矩阵(Laplacian matrix) 也叫做导纳矩阵、基尔霍夫矩阵或离散拉普拉斯算子,是图论中用于表示图的一种重要矩阵。

定义

给定一个具有 n 个顶点的简单图 G = ( V , E ) G=( V , E ) G=(V,E),V 为顶点集合,E 为边集合,其拉普拉斯矩阵可定义为:
L = D − A L = D − A L=DA

其中 A ∈ R A \in R AR 为邻接矩阵(adjacency matrix), D ∈ R n × n D \in \mathbb{R}^{n \times n} DRn×n 为度矩阵(degree matrix)。

注意,A 中的元素仅仅可能是 0 和 1,且其对角元素全为 0。D 是一个对角矩阵,其对角线上的元素计算方式为 D i i = ∑ j A i j D_{i i}=\sum_{j} A_{i j} Dii=jAij

进一步地,L 的每个元素值的具体计算方式如下所示:
L i j = { D i i if    i = j − 1 if    i ≠ j    and    v i    is adjacent to    v j 0 otherwise L_{ij}=\left \{\begin{array}{ll}D_{ii}\quad &\text{if}\; i=j\\-1 \quad &\text{if}\; i\ne j\;\text{and}\;v_i\;\text{is adjacent to}\; v_j\\0\quad &\text{otherwise}\end{array}\right. Lij=Dii10ifi=jifi=jandviis adjacent tovjotherwise

示例

给定一个简单的图 G = ( V , E ) G=(V, E) G=(V,E),其示意图如下所示
在这里插入图片描述

根据该示意图,可以获得 G 对应的邻接矩阵 A ,如下所示:
A = ( 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 ) A=\begin{pmatrix}0&1&0&0&1&0\\1&0&1&0&1&0\\0&1&0&1&0&0\\0&0&1&0&1&1\\1&1&0&1&0&0\\0&0&0&1&0&0\end{pmatrix} A=010010101010010100001011110100000100

根据度矩阵的计算方式,可以获得 G 对应的度矩阵 D ,如下所示:
D = ( 2 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 1 ) D=\begin{pmatrix}2&0&0&0&0&0\\0&3&0&0&0&0\\0&0&2&0&0&0\\0&0&0&3&0&0\\0&0&0&0&3&0\\0&0&0&0&0&1\end{pmatrix} D=200000030000002000000300000030000001

根据拉普拉斯矩阵的定义 L = D − A L = D − A L=DA,可以获得 G 对应的拉普拉斯矩阵 L,如下所示:
L = ( 2 − 1 0 0 − 1 0 − 1 3 − 1 0 − 1 0 0 − 1 2 − 1 0 0 0 0 − 1 3 − 1 − 1 − 1 − 1 0 − 1 3 0 0 0 0 − 1 0 1 ) L=\begin{pmatrix}2&-1&0&0&-1&0\\-1&3&-1&0&-1&0\\0&-1&2&-1&0&0\\0&0&-1&3&-1&-1\\-1&-1&0&-1&3&0\\0&0&0&-1&0&1\end{pmatrix} L=210010131010012100001311110130000101

显然,拉普拉斯矩阵都是对称的。

性质
  1. 拉普拉斯矩阵是半正定矩阵;
  2. 特征值中0出现的次数就是图连通区域的个数;
  3. 最小特征值是0,因为拉普拉斯矩阵每一行的和均为0;
  4. 最小非零特征值是图的代数连通度。
变体

除了最普通的拉普拉斯矩阵形式 L = D − A L = D − A L=DA 外,还具有多种常见的形式,如 Symmetric normalized Laplacian 和 Random walk normalized Laplacian。

Symmetric normalized Laplacian的定义如下:
L s n = D − 1 2 L D − 1 2 = I − D − 1 2 A D − 1 2 L^{sn}=D^{-\frac{1}{2}}LD^{-\frac{1}{2}}=I-D^{-\frac{1}{2}}AD^{-\frac{1}{2}} Lsn=D21LD21=ID21AD21

L i j s n = { 1  if  i = j  and  D i i ≠ 0 − 1 D i i D j j  if  i ≠ j  and  v i  is adjacent to  v j 0  otherwise  L_{i j}^{s n}=\left\{\begin{array}{ll} 1 & \text { if } i=j \text { and } D_{i i} \neq 0 \\ -\frac{1}{\sqrt{D_{i i} D_{j j}}} & \text { if } i \neq j \text { and } v_{i} \text { is adjacent to } v_{j} \\ 0 & \text { otherwise } \end{array}\right. Lijsn=1DiiDjj 10 if i=j and Dii=0 if i=j and vi is adjacent to vj otherwise 

Random walk normalized Laplacian的定义如下:
L r w = D − 1 L = I − D − 1 A L^{r w} =D^{-1} L=I-D^{-1} A Lrw=D1L=ID1A

L i j r w = { 1  if  i = j  and  D i i ≠ 0 − 1 D i i  if  i ≠ j  and  v i  is adjacent to  v j 0  otherwise  \begin{aligned} L_{i j}^{r w}=\left\{\begin{array}{ll} 1 & \text { if } i=j \text { and } D_{i i} \neq 0 \\ -\frac{1}{D_{i i}} & \text { if } i \neq j \text { and } v_{i} \text { is adjacent to } v_{j} \\ 0 & \text { otherwise } \end{array}\right. \end{aligned} Lijrw=1Dii10 if i=j and Dii=0 if i=j and vi is adjacent to vj otherwise 

参考文献1

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值