leetcode 264.丑数II

17 篇文章 0 订阅

leetcode 264.丑数II

题干

给你一个整数 n ,请你找出并返回第 n 个 丑数。
丑数 就是只包含质因数 2、3 和/或 5 的正整数。

示例 1:
输入:n = 10
输出:12
解释:[1, 2, 3, 4, 5, 6, 8, 9, 10, 12] 是由前 10 个丑数组成的序列。

示例 2:
输入:n = 1
输出:1
解释:1 通常被视为丑数。

提示:
1 <= n <= 1690

知识点&算法

DP:
丑数是分解质因数后只有2 3 5质因数的数字,因此反过来讲,也可以说丑数是若干个2 3 5的乘积。
因此我们从1开始,不断尝试乘 2 3 5,每得到一个新的数,就记一次数,这样直到获得第n个丑数(第n大的乘积)。
设数组dp[i]表示第i个丑数,dp[1] = 1,取循环i = 2 - n进行遍历,
维护三个指针p2 p3 p5初始全部指向1,尝试将dp[pk] * k = numk (k = 2, 3, 5) ,并找出其中的最小值(可能重复)作为dp[i],同时判定dp[i]的来源(dp[p2] * 2还是其他…),将来源的指针++。
特别注意,诸如2 x 3 和 3 x 2的组合是等价的,所以可能会遇到num2 num3 num5 中出现重复元素的情况,此时重复的元素指针都要+1,所以判断条件应当是3个if,而不能是if else if…

小顶堆:
类似的,由于所有丑数都是由1 乘若干个2 3 5得到的,所以我们用优先队列实现小顶堆。
先将1入队列,然后不断取出队列首元(最小丑数),然后将2倍 3倍 5倍首元再次加入优先队列(为防止出现类似2 x 3 和 3 x 2 的重复,用map进行去重),如此重复n次,取出的数就是第n个丑数
缺点在于会储存大量用不到的丑数。

题解

DP题解:

class Solution {
public:
    int dp[1700];
    int nthUglyNumber(int n) {
        dp[1] = 1;
        int p2 = 1, p3 = 1, p5 = 1;
        for(int i = 2 ; i <= n ; ++i){
            int num2 = dp[p2] * 2, num3 = dp[p3] * 3, num5 = dp[p5] * 5;
            dp[i] = min(min(num2,num3),num5);
            if(dp[i] == num2) p2++;
            if(dp[i] == num3) p3++;
            if(dp[i] == num5) p5++;
        }
        return dp[n];
    }
};

小顶堆题解:

class Solution {
    public:
        typedef long long ll;
        int nthUglyNumber(int n) {
            map<ll,int> cnt;
            priority_queue<ll,vector<ll>,greater<ll>> nums;
            ll idx = 1, num = 1,ans = 1;
            nums.push(1);
            cnt[1]++;
            for(int i = 1 ; i <= n ; ++i){
                ans = nums.top();
                nums.pop();
                if(cnt[ans*2] == 0){
                    nums.push(ans*2);
                    cnt[ans*2]++;
                }
                if(cnt[ans*3] == 0){
                    nums.push(ans*3);
                    cnt[ans*3]++;
                }
                if(cnt[ans*5] == 0){
                    nums.push(ans*5);
                    cnt[ans*5]++;
                }
                //cout<<ans<<' ';
            }
            return ans;
        }
    };
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值