leetcode 264.丑数II
题干
给你一个整数 n ,请你找出并返回第 n 个 丑数。
丑数 就是只包含质因数 2、3 和/或 5 的正整数。
示例 1:
输入:n = 10
输出:12
解释:[1, 2, 3, 4, 5, 6, 8, 9, 10, 12] 是由前 10 个丑数组成的序列。
示例 2:
输入:n = 1
输出:1
解释:1 通常被视为丑数。
提示:
1 <= n <= 1690
知识点&算法
DP:
丑数是分解质因数后只有2 3 5质因数的数字,因此反过来讲,也可以说丑数是若干个2 3 5的乘积。
因此我们从1开始,不断尝试乘 2 3 5,每得到一个新的数,就记一次数,这样直到获得第n个丑数(第n大的乘积)。
设数组dp[i]表示第i个丑数,dp[1] = 1,取循环i = 2 - n进行遍历,
维护三个指针p2 p3 p5初始全部指向1,尝试将dp[pk] * k = numk (k = 2, 3, 5) ,并找出其中的最小值(可能重复)作为dp[i],同时判定dp[i]的来源(dp[p2] * 2还是其他…),将来源的指针++。
特别注意,诸如2 x 3 和 3 x 2的组合是等价的,所以可能会遇到num2 num3 num5 中出现重复元素的情况,此时重复的元素指针都要+1,所以判断条件应当是3个if,而不能是if else if…
小顶堆:
类似的,由于所有丑数都是由1 乘若干个2 3 5得到的,所以我们用优先队列实现小顶堆。
先将1入队列,然后不断取出队列首元(最小丑数),然后将2倍 3倍 5倍首元再次加入优先队列(为防止出现类似2 x 3 和 3 x 2 的重复,用map进行去重),如此重复n次,取出的数就是第n个丑数
缺点在于会储存大量用不到的丑数。
题解
DP题解:
class Solution {
public:
int dp[1700];
int nthUglyNumber(int n) {
dp[1] = 1;
int p2 = 1, p3 = 1, p5 = 1;
for(int i = 2 ; i <= n ; ++i){
int num2 = dp[p2] * 2, num3 = dp[p3] * 3, num5 = dp[p5] * 5;
dp[i] = min(min(num2,num3),num5);
if(dp[i] == num2) p2++;
if(dp[i] == num3) p3++;
if(dp[i] == num5) p5++;
}
return dp[n];
}
};
小顶堆题解:
class Solution {
public:
typedef long long ll;
int nthUglyNumber(int n) {
map<ll,int> cnt;
priority_queue<ll,vector<ll>,greater<ll>> nums;
ll idx = 1, num = 1,ans = 1;
nums.push(1);
cnt[1]++;
for(int i = 1 ; i <= n ; ++i){
ans = nums.top();
nums.pop();
if(cnt[ans*2] == 0){
nums.push(ans*2);
cnt[ans*2]++;
}
if(cnt[ans*3] == 0){
nums.push(ans*3);
cnt[ans*3]++;
}
if(cnt[ans*5] == 0){
nums.push(ans*5);
cnt[ans*5]++;
}
//cout<<ans<<' ';
}
return ans;
}
};