2021Java初学者要怎么上路?

本文为Java初学者提供了一条清晰的学习路径,包括Java的应用场景(桌面级应用、企业级应用、嵌入式设备和游戏开发等)、如何开始学习Java(环境配置、IDE选择、HelloWorld等)、基础概念(数据类型、变量、运算符、输入输出、控制流程)以及学习建议(写博客、做笔记和实践)。通过这个指南,你可以更好地理解Java并开始你的编程之旅。

初学Java的时候一定有很多问题,但是学一项技术之前就是要做好充足的准备。但是不管你是什么时候开始学Java,基础部分的内容都是一样的,在基础知识上不需要花费过多的时间去找新教程。

了解Java是做什么的

在学习之前我们应该弄明白的是Java可以做什么?如何就业?就业方向?

桌面级应用:也就是需要跨平台的桌面级应用程序,简单地说就是我们在电脑的一些运行程序,比如word、excel等运行在本急上的应用属于桌面应用。

企业级应用:简单地说是大规模的应用,一般就是用户量非常大,数据较大,对系统的稳定性和安全性以及可扩展性,都是要求比较高的。这也是Java目前最广泛的领域,而且是岗位需求量最大的。

目前企业级应用已经涉及到各行各业了,比如各行业的应用、自动化OA、客户关系管理系统也就是CRM、人力资源、企业资源计划ERP、知识管理KM、供应链管理SCM、现在很多公司都在用SaaS等等。几乎我们可以想到的应用,Java开发都可以实现。

嵌入式设备以及消费类电子产品,这个理解起来也不费劲,包括我们的各种智能的卡片,医疗设备,还有各家各户的信息家电类,例如机顶盒等。

另外我们现在的很多游戏部分也是Java来实现的。除了这些,Java还可以显示图形界面(也就是数据可视化)、数据库操作(大数据、数据分析挖掘)、文件操作等等。

2021Java初学者要怎么上路?

如何开始学习

首先要把Java环境准备好,工欲善其事必先利其器,要开始学之前就要配置好Java运行需要的环境。这个教程有很多,大家可以自己去百度。

集成开发环境安装,对于零基础小白给大家推荐的是eclipse,安装和使用都非常简单。

以上准备工作完成之后,就HelloWorld了,很多小白不明白为什么所有语言都要从helloworld学起,这里要给大家科普一下。

Java数据类型:Java是一门强类型语言,必须为每一个变量声明一种类型,在Java中一共有8个类型。四种整型(byte,short,int,long),两种浮点(float,double),一种字符类型char,一种用于表示真值的boolean型。

Java遍历:学完了数据类型学变量,在Java中每一个变量都有一个类型,声明变量类型时变量的类型位于变量名之前。

Java运算符:学习了数据类型和变量之后就要开始学习数据之间是怎么运算的。

Java的输入输出:这是为了增加后面示例程序的互动性,需要程序能够从控制台接收输入标准输入流,并在控制台中以适当的形式输出标准输出流。在Java里点号(.)用于调用方法(在C语言中被称为的函数)。

Java控制流程:Java使用条件语句和循环语句确定控制流程。

以上内容学习结束之后基本新手就是掌握了基础知识,在这里需要注意的是,第一个阶段最难,因为入门的人时候很多知识都需要背出来的。有两个方法送给大家,第一自己写博客,最好是默写,当你的东西有人看的时候自己也会获取学习的动力。

第二就是不要觉得自己有课件或者是书就不记笔记,另外每完成一个知识点之后大家都要找出对应学习内容的习题,自己来完成一遍看看自己的解题思路和代码对不对。这一步非常重要,甚至关系到大家学完Java之后是不是一个只会看不会写的程序员。

【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)内容概要:本文围绕使用Pytorch框架搭建神经网络,重点研究基于DQN算法、优先级采样的DQN算法以及DQN与人工势场相结合的方法在避障控制中的应用,提供了Matlab和Python的实现代码。文档还涵盖多种智能优化算法、机器学习与深度学习模型、路径规划技术、无人机控制、电力系统管理等多个科研方向的技术实现与仿真研究,展示了丰富的MATLAB/Simulink应用场景和前沿算法的代码复现,旨在为科研工作者提供全面的技术支持与实践参考。; 适合人群:具备一定编程基础,熟悉Python或Matlab语言,从事人工智能、自动化、控制工程、机器人、电力系统等相关领域的研究生、科研人员及工程师。; 使用场景及目标:①学习和实现强化学习在机器人或无人机避障中的具体应用;②掌握DQN及其改进算法(如优先级采样)的设计与训练流程;③结合传统人工势场法提升智能体避障能力;④获取多种高热度科研方向(如微电网优化、故障诊断、路径规划等)的代码实现与复现方案,助力论文撰写与项目开发; 阅读建议:建议按目录顺序系统性学习,重点关注DQN与人工势场融合的避障策略实现细节,结合提供的网盘资源下载完整代码进行调试与实验,同时可拓展学习文中提及的多种优化算法与深度学习模型的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值