细粒度图像分类 pytorch Resnet50 分类代码 + 数据集下载

该博客分享了Resnet50模型在细粒度图像分类任务上的应用,包括CUB-200-2011、StanfordCars和FGVCAircraft三个数据集。作者提供了代码链接,并展示了不同优化器(如w/oamp、w/apex.amp、w/torch.cuda.amp)下的准确率对比,最高可达96.32%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Resnet50 分类 pytorch 代码:

Github: https://github.com/cyizhuo/Fine-Grained-Image-Classification

accuracy:

Datasetw/o ampw/ apex.ampw/ torch.cuda.ampSOTA
CUB-200-201186.7486.6886.5991.7
FGVC Aircraft93.2593.5892.8694.7
Stanford Cars94.0994.3094.3296.32

细粒度图像分类(FGVC)数据集:

【CUB-200-2011】
Github:https://github.com/cyizhuo/CUB-200-2011-dataset
Github 镜像:https://hub.fastgit.org/cyizhuo/CUB-200-2011-dataset
百度:https://aistudio.baidu.com/aistudio/datasetdetail/85759
【Stanford Cars】
Github:https://github.com/cyizhuo/Stanford-Cars-dataset
Github 镜像:https://hub.fastgit.org/cyizhuo/Stanford-Cars-dataset
百度:https://aistudio.baidu.com/aistudio/datasetdetail/85765
【FGVC Aircraft】
Github:https://github.com/cyizhuo/FGVC-Aircraft-dataset
Github 镜像:https://hub.fastgit.org/cyizhuo/FGVC-Aircraft-dataset
百度:https://aistudio.baidu.com/aistudio/datasetdetail/85757

注:数据集图片已按分类整理好(仅包括图像)如图:
在这里插入图片描述

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值