自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

原创 Meta Correction: Domain-aware Meta Loss Correction for Unsupervised Domain Adaptation in Semantic Se

1)算法简介DMLC (Domain-aware Meta-learning strategy is devised to benefit Loss Correction )引入NTM(noise transition matrix )矩阵,用domain-invariant source data构造meta data,去guide NTM的估计。发表在CVPR2021,应该是目前UDA语义分割最好结果,GT5–>CitySpcace (51.2/52.1).2)问题现状为了缩小domain

2021-03-14 15:24:39 1426 2

原创 Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation(ECCV2020)

文章目录Motivation思路Motivation        但从题目就知道:类别很重要,细粒度的对抗预适应分割方法。还是讲一个问题,大部分对抗方法是从整体去对齐,并没有考虑class-level的特征对齐,对于语义分割来说,class-level的结构很重要。第二,传统的对抗性方法只追求最大化边缘分布对齐,而忽略了域间语义结构的不一致性(并没有去关注类与类之间结构究竟怎么样,讲白了,就是说每个类别的条件分布也应该对齐)。出发点自然是怎样.

2020-12-07 21:23:43 1179

原创 2018Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training

文章目录一、简单介绍一、简单介绍        我先说自己找这篇文章的目的:Self-Training的方法看过很多,想从类别平衡这个角度上去找找思路,看完摘要,有几个地方先记录下:啥叫隐变量损失最小化,另外大的类别(比如road,占图像比例较多),它的伪标签生成占优势,为了类别平衡,引入空间先验来优化生成的标签。Self-Training通常是:sourece 数据训练模型—>生成target数据的伪标签,然后和源域有label的数据一起重新训练模型,这

2020-11-24 20:30:01 1330 1

原创 Pixel-Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association: A New Perspective for Domain Adaptive Semantic SegmentationNeurIPS 2020Pixel-Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation摘要一、What's new二、Technoloy1.引入库三、Conclution摘要    

2020-11-20 13:59:55 685

原创 域适应系列3:Minimal-entropy Correlation Alignment for Unsupervised Deep Domain Adaptation(ICLR 2018)

1、Minimal-entropy Correlation Alignment for Unsupervised Deep Domain Adaptation(ICLR 2018)     在介绍文章之前,先理解下CORAL[1](CORrelation ALignment )这个概念,这个概念来自 Return of Frustratingly Easy Domain Adaptation. AAAI 2016这篇文章,个人是超喜欢这篇文章,忍不住把它摘要附上,算

2020-09-23 21:33:22 1342

原创 域适应系列2:Transferable Curriculum for Weakly-Supervised Domain Adaptation(AAAI 2019)

1、Transferable Curriculum for Weakly-Supervised Domain Adaptation        论文提出可迁移的课程学习(结合课程学习+对抗学习)方法,解决弱监督域适应中源域样本噪声以及domain shift 的问题。这篇文章是从数据角度出发,是弱监督的域适应方法。        实际的域适应任务,源域的数据不太可能都是高质量的,也就说真正做域适应任务时,收集的数据肯定是有

2020-09-22 22:42:46 800

原创 域适应方法系列1:Asymmetric Tri-training for Unsupervised Domain Adaptation

1、Asymmetric Tri-training for Unsupervised Domain Adaptation–非对抗方法        研究域适应,都希望能够学到域不变的特征,也就是说,假如现在是分类的任务,希望学习到分类器在不同的域都能够表现良好。实际情况是,这是很难的事情,因为不同域的具有不同的分布,具有各自具体域的特性。关于这方面的解决方法很多,看下本文Asymmetric Tri-training的方法吧,即用不对称的三个网络,其中两个网络用来生

2020-09-22 21:48:25 955

原创 域自适应学习分割:ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation

1、ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation目的:这篇文章和前几篇一样的思想,都是用对抗学习的思想来做域自适应学习分割,一个系列的文章,前面几篇可以当做了解,这篇着重学习代码,以及熵最小化这种思想。从网络,训练过程多方面学习,尤其把网络训练起来。Adversarial Learning for Semi-Supervised Semantic SegmentationL

2020-08-19 17:22:55 2446

原创 论文域适应语义分割:Learning to Adapt Structured Output Space for Semantic Segmentation

1、Learning to Adapt Structured Output Space for Semantic Segmentation目的:结构输出自适应思想,多层对抗网络学习,了解带标注合成图像,如何在合成图像上训练,然后自适应到真实场景上。摘要:有监督的基于卷积神经网络语义分割方法需要依赖像素级的GT,对于未见过的图像泛化能力差(这体现在源域和目标域之间图像差异较大),此外,图像标注过程也是繁琐费力的事情,因此,需要找到域自适应的方法,将源域的label自适应到目标域中。本文基于语义分割,提出对

2020-08-19 10:38:24 1548 1

原创 论文:Adversarial Learning for Semi-Supervised Semantic Segmentation

1、Adversarial Learning for Semi-Supervised Semantic Segmentation目的:学习对抗训练是如何做语义分割,思想,做法,结论,和后续用这种思想的方法做对比1)先整体看下文章做了什么工作?      对抗的学习框架提高语义分割精度,在推理过程中,并不需要判别器,所以不会增加额外的计算。       半监督的方法,在训练时用了无标注的图像。2)整个过程是怎么做的?

2020-08-16 17:35:37 1382

原创 论文:Baby Steps Towards Few-Shot Learning with Multiple Semantics

1、Baby Steps Towards Few-Shot Learning with Multiple Semantics目的:记录下对文章的理解摘要:额外的语义信息可以显著提高少样本学习的能力,论文在少样本学习中结合了多种丰富的语义,这里语义信息包括类别标签、属性和自然语言描述等信息。论文在miniImageNet 和CUB few-shot benchmark做了丰富实验。下面几个问题可以理解讨论下:1、直观对语义信息的理解      以婴儿的物体识别

2020-08-14 23:53:55 468

原创 语义分割论文翻译:Large Kernel Matters —— Improve Semantic Segmentation by Global Convolutional Network

1、Large Kernel Matters —— Improve Semantic Segmentation by Global Convolutional Network摘要:小的卷积核堆叠比用一个大的卷积核计算更加高效。在语义分割领域,需要执行每个像素的预测分类,更大的卷积核(感受野更大),对于分类和定位任务来说,作用更大。所以提出GCN来解决语义分割的分类和定位的问题。文中还提出一个基于残差的边界细化模块。但从摘要可以看出主要有方面工作:用了更大感受野的信息,还有就是后处理(边界refine)。

2020-08-11 23:03:38 465

原创 少样本语义分割---CANet

论文:CANet: Class-Agnostic Segmentation Networks with Iterative Refinement and Attentive Few-Shot Learning(2019年CVPR)论文要解决的问题:利用小样本训练一个比较好的分割模型    语义分割任务需要对每个像素点进行分类,因此训练语义分割模型的数据集需要人为的对每个像素点进行标记,这是一项繁琐和成本高的工作。(data labeling for pixelwise segm

2020-08-07 22:57:55 2981

原创 详细记录Few-Shot Semantic Segmentation的框架笔记

Few-Shot Semantic Segmentation任务: 以one-shot为例,在support set 中,给定新类(比如狗)的一张图片(或多张图片,比如few-shot,就是多张)以及对应的分割mask(label),这里需要注意,这里的新类(狗)并没有出现在训练任务中。然后在quiery set 给定一张含新类(狗)的图片,需要准确地对这张图片进行分割。这个问题简单说就是:给你一张有mask的图片,比如图片中这是一只狗,然后给你其他新的图片,你还能知道哪个是狗并分割出来,这如何做到的呢?

2020-07-31 14:49:47 2947 3

原创 day07_pytorch7----GAN学习

目的:掌握pytorch网络训练过程,了解Adversarial Trainning思想1、解释GAN,用自己的理解回答,适当与监督学习训练比较下2、从代码上解释DCGAN训练过程3、训练一个DCGAN,生成人脸图像或卡通图像等等,实际效果汇报4、了解GAN的其它有趣应用 https://toutiao.io/posts/du98nn/preview5、GAN推荐github: https://github.com/nightrome/really-awesome-gan笔记GAN: 一种可

2020-07-28 10:04:25 211

原创 pytorch系列学习记录

Week 6

2020-07-25 23:19:30 208

原创 读High-Performance Long-Term Tracking with Meta-Updater的记录

读High-Performance Long-Term Tracking with Meta-Updater的记录**本文纯粹是读文章记录,方便自己理解,不去编辑了核心是长期跟踪+元更新器(Meta-Updater)长跟踪器应用更广,以往比较好的长跟踪器也主要是基于离线训练的孪生网络结构,其实做长期跟踪还是需要在线更新。如果直接用短期跟踪的在线更新方式,由于跟踪过程不太容易控制,易受噪声影响...

2020-04-16 11:57:32 1126

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除