论文域适应语义分割:Learning to Adapt Structured Output Space for Semantic Segmentation

1、Learning to Adapt Structured Output Space for Semantic Segmentation
目的:结构输出自适应思想,多层对抗网络学习,了解带标注合成图像,如何在合成图像上训练,然后自适应到真实场景上。
摘要:有监督的基于卷积神经网络语义分割方法需要依赖像素级的GT,对于未见过的图像泛化能力差(这体现在源域和目标域之间图像差异较大),此外,图像标注过程也是繁琐费力的事情,因此,需要找到域自适应的方法,将源域的label自适应到目标域中。本文基于语义分割,提出对抗学习的域自适应方法。也就是说,源域和目标域之间空间结构相似,采用多层对抗网络的方法,在不同特征层中有效地在输出空间中完成域自适应。
      以下几个问题,可以一起通过读论文来学习下:
1)动机描述
在这里插入图片描述
      问题的核心在于如何缩小源域和目标域之间的差距,尤其是当目标域没有标注时,最直接的思路就是知识迁移或域自适应。比如说对于图像分类任务,可以采用特征对齐(让特征分布一致,这就是特征空间自适应)自适应的方法(即提取的特征在两个域中泛化性能都非常好)。而对于语义分割任务来说,特征需要encode 更加复杂多样化的视觉信息,比如外观,形状,上下文信息等等,这样的话,特征维度很高且复杂。所以文章聚焦在预测输出上(像素级的预测任务)。作者认为,预测输出包含了丰富的空间和局部信息,比如上图中,尽管两幅图像的外观存在很大差异,但它们的输出存在大量显著相似的地方,比如空间布局,局部上下文(车的旁边是树),所以文章认为无论图像来自哪个域,它们的分割结果应该是共享某些相似的地方。因此,全文的目标是只要在输出空间上(低维的softmax输出),让model在两个域中生成相似的分布。(本文提的输出空间自适应)。
2)多层对抗学习和单层对抗学习比较

在这里插入图片描述

      单层对抗学习
在这里插入图片描述
      先看Single-level Adversarial Learning,先训练判别器,对抗损失为:
在这里插入图片描述然后训练Segmentation Network Training(生成器),源域上交叉熵损失为:
在这里插入图片描述
目标域的对抗损失为:
在这里插入图片描述
这个损失目的是让分割网络(生成器)生成的的输出能够欺骗判别器,也就是让源域和目标域的输出接近。由于单层输出适应性效果有可能不太好,所以多层,这里多层仅仅是不同层特征得到输出。
在这里插入图片描述
总结下:文章从输出上考虑,采用对抗学习的方法,相比特征空间自适应,这种输出空间自适应效果更好

3)代码学习

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
“你只需要90000个参数即可适应光:一款轻量级的Transformer” Light:一款轻量级的Transformer是指在模型参数数量较少的情况下,实现了对光照的适应能力。一般来说,Transformer模型通常需要巨大的参数数量来实现高质量的自然语言处理任务。然而,对于特定的任务,比如对光照的适应,研究人员最近提出了一种轻量级的Transformer模型,只需要90000个参数即可实现。 这个模型的轻量级设计主要集中在两个方面:模型架构和参数数量。首先,模型架构方面,轻量级Transformer采用了一种精简的结构,去掉了一些传统Transformer中的冗余模块。其次,在参数数量方面,研究人员通过对参数维度和层数进行有效的优化,实现了模型的轻量化。因此,这个轻量级Transformer仅需要90000个参数,就能够达到对光照的适应能力。 这个轻量级Transformer的适应光照的能力主要体现在两个方面:特征提取和模型自适应。首先,在特征提取方面,轻量级Transformer能够从输入的光照图像中提取出有效的特征表示,用于后续的任务处理。其次,在模型自适应方面,轻量级Transformer能够动态地学习并调整网络参数,从而更好地适应不同光照条件下的输入数据,提高模型的性能。 总之,通过轻量级的设计和精简的参数数量,这个仅需要90000个参数的轻量级Transformer模型能够有效地适应光照。这种模型设计的优势在于在保持良好性能的同时,减少了模型的复杂性和计算资源的需求,为光照相关任务的研究和应用提供了一种新的解决方案。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值