Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation(ECCV2020)

文章目录

Motivation

        但从题目就知道:类别很重要,细粒度的对抗预适应分割方法。还是讲一个问题,大部分对抗方法是从整体去对齐,并没有考虑class-level的特征对齐,对于语义分割来说,class-level的结构很重要。第二,传统的对抗性方法只追求最大化边缘分布对齐,而忽略了域间语义结构的不一致性(并没有去关注类与类之间结构究竟怎么样,讲白了,就是说每个类别的条件分布也应该对齐)。出发点自然是怎样才能达到更好的class-level alignment
在这里插入图片描述
        上图就表达了一个意思:(a)是对抗方法做的事情,它的判别器输出0/1,最终能够实现Global feature的aligment,讲白了,它只能做到让两个分布一股脑的对齐,没法增强target域特征判别性,所以在分类器边界出,容易对target域的样本错误判别。(b)是更加细粒度的对抗对齐,它的判别器输出包含各个类别概率,最终能够保证两个域全局和具体类别的对齐,效果更好。

思路

        把类别信息融入到判别器中,保证更加细粒度的特征对齐,即在特征对齐时,是针对具体类别来做。有几个方面需要考虑:类与类之间的关系,如何把类别信息融入到判别器中。

在这里插入图片描述
总结下作者的做法,

        ​ 分割loss还是一样,标准的交叉熵;原来的对抗方法中,判别器做二分类,源域是0,目标域是1;作者把类别信息加入到判别器中。看label就可以知道它们区别,原来源域label是[1, 0], 目标域是[0,1];修改后,源域label是**[a; 0], 目标域是[0; a],总共2K维度。具体来说:原来Domain Discriminator是做binary classifier,现在把它的每个输出改为K通道,总共2K个通道,这样类与类之间的结构关系也就知道了,保证了class-level alignment 。关键这里a是什么,论文称为类别知识(class knowledge )**。

传统判别器 :
在这里插入图片描述
判别器融入类别信息 :

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值