题意:有n种树,每种树给出高度h,砍掉每颗树的花费c,每种树的数量p,现在要砍掉一些树,使得最高的树的数量超过所有树的一半,问最小花费。(不同种类的树高度可能相同)
题解:枚举不同的高度,把高于它的树都砍掉,然后比它矮的树挑便宜的砍,使得该高度的树占所有树的1/2+1。给树按高度排序,首先可以用后缀和预处理出砍掉高于每种高度的树的花费,然后用线段树维护某一价格区间的树一共有多少颗,tr[1].num就是比当前高度矮的树的总数,要砍掉的树的数量就是tr[1].num-tot+1,tot是当前高度的树的总数量。询问砍掉矮的树的花费时,当要砍的树的数量k小于左子树,就递归到左子树,如果大于左子树,就花费加上左子树的花费,数量k减去左子树的数量,然后递归到右子树。当递归到叶子节点的时候,花费直接加上剩余数量*该价格。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;
typedef long long ll;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int maxn = 1e5+5;
ll ans,suf[maxn];
struct tree
{
ll h,p;
int c;
}a[maxn];
bool cmp(const tree &a,const tree &b)
{
return a.h < b.h;
}
struct node
{
int l,r;
ll num,sum;
}tr[200*4+1];
void build(int k,int l,int r)
{
tr[k].l = l,tr[k].r = r;
if(l == r)
{
tr[k].num = 0ll;
tr[k].sum = 0ll;
return;
}
int mid = (l+r)/2;
build(k*2,l,mid);
build(k*2+1,mid+1,r);
}
void update(int k,int cost,ll cnt)
{
if(tr[k].l == tr[k].r)
{
tr[k].num += cnt;
tr[k].sum += (ll)cost*cnt;
return;
}
int mid = (tr[k].l+tr[k].r)/2;
if(cost <= mid)
update(k*2,cost,cnt);
if(cost > mid)
update(k*2+1,cost,cnt);
tr[k].num = tr[k*2].num + tr[k*2+1].num;
tr[k].sum = tr[k*2].sum + tr[k*2+1].sum;
}
void query(int k,ll cnt)
{
if(tr[k].l == tr[k].r)
{
ans += cnt*tr[k].l;
return;
}
if(cnt <= tr[k*2].num)
query(k*2,cnt);
if(cnt > tr[k*2].num)
{
ans += tr[k*2].sum;
cnt -= tr[k*2].num;
query(k*2+1,cnt);
}
}
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(suf,0,sizeof(suf));
memset(a,0,sizeof(a));
memset(tr,0,sizeof(tr));
int mx = 0;
for(int i=1; i<=n; i++)
{
scanf("%lld%d%lld",&a[i].h,&a[i].c,&a[i].p);
mx = max(mx,a[i].c);
}
build(1,1,mx);
sort(a+1,a+1+n,cmp);
for(int i=n; i>0; i--)
{
suf[i] = suf[i+1] + a[i].p*a[i].c;
}
ll anss = INF;
for(int i=1; i<=n; i++)
{
if(a[i].h == a[i-1].h)
continue;
int j=i;
ll tot = a[i].p;
while(j+1<n && a[j+1].h == a[i].h)
{
j++;
tot += a[j].p;
}
ans = 0;
ans += suf[j+1];
if(tr[1].num >= tot)
query(1,tr[1].num-tot+1);
for(int l=i; l<=j; l++)
update(1,a[l].c,a[l].p);
anss = min(anss,ans);
}
printf("%lld\n",anss);
}
}