金 融 计 算 (实验报告册)-python

实验一:多期复利
案例:26 岁的外企白领王小姐,每月工资 6000 元,除去日常开销和朋友应酬所剩无几。考虑到未来购车购房的需求,王小姐打算每月固定拿出 1000 元用于购买招商信诺运筹帷幄终身寿险(投资连结型),交满 10 年,既能投资又有年轻人必须的意外险保障,不再做个“月光族”。这样一来,在每月扣取15 元初始费用后,剩余的 985 元进入王小姐名下的保单账户,则在投资回报率分别为7%的假设下,其未来可能的个人账户价值是多少?
在这里插入图片描述
在这里插入图片描述
实验二:普通股票定价
案例:假设贴现率5%,每期的股息如下图所示,计算该股票的价格?
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
实验三:远期衍生品定价
案例1:考虑一个6个月的远期多头情况,标的资产是1年期贴现债券,远期的交割价为950元。假设6个月的无风险利率为6%,债券的现价为930元。试求远期的价值及远期合约生效时远期的价格分别是多少?
在这里插入图片描述
在这里插入图片描述
案例2:考虑一种5年期债券,价格为900元。假设这种债券的1年期远期的交割价格为910元。在6个月后和12个月后,预计都将收到60元的利息。第二个付息日正好在远期交割日之前。已知6个月和12个月的无风险利率分别是9%和10%。试计算这种远期的价值和价格?
在这里插入图片描述
在这里插入图片描述
实验四:期货衍生品定价
案例:考虑一外汇期货,其标的资产价格是100元,交割价格是99元,本国无风险年利率是10%,外汇的无风险年利率是0.2%,到期时间是6个月,试计算该外汇期货的价格。
在这里插入图片描述
在这里插入图片描述
实验五:对数正态分布
案例:一只初始价格为40元的股票,该股票的收益率期望为每年16%,波动率为每年20%,则6个月之后的股票价格的概率分布是什么?
在这里插入图片描述
在这里插入图片描述
实验六:期权定价理论模型
案例1:某金融机构卖出100 000份无股息股票的欧式看涨期权,收入300 000 元,假设股票价格49元,期权执行价格为50元,无风险利率5%,股票价格波动率每年20%,期权期限20周,股票的收益率期望为每年13%。根据期权定价公式,该期权的理论价格应是多少?
在这里插入图片描述
在这里插入图片描述
案例2:某欧式看涨期权价格1.875,标的资产价格21,执行价格20,无风险利率10%,期限3个月,计算隐含波动率?
在这里插入图片描述
在这里插入图片描述
实验七:蒙特卡罗法
案例:考虑无股息的欧式看涨期权和看跌期权,他们的标的资产价格为100元,行权价格为100元,无风险年利率为10%,年波动率25%,期权有效期1年,分别用Black-Scholes期权定价公式和蒙特卡洛法(对数正太分布随机变量模拟)计算他们的价格,并进行比较?
在这里插入图片描述
在这里插入图片描述
实验八:有限差分法
案例:考虑一个无股息股票5个月期限的美式看跌期权的价格,股票的当前价格为50元,执行价格为50元,无风险年利率为10%,波动率为每年40%。
注:股票所能达到的最大值100元,价格步长为5元,时间步长为半个月。
在这里插入图片描述
在这里插入图片描述
参考资料
参考资料

Python中,我们可以利用Black-Scholes模型的原理来近似计算远期合约的价值。对于一个1年期贴现债券的6个月远期合约,我们需要知道的是当前价格、未来现流(即债券到期值)、无风险利率以及时间跨度。 首先,我们需要计算未来的贴现因子(discount factor),这个可以用 (1 + r)^(-t)计算,其中r是月利率(无风险利率除以12),t是时间跨度(这里为6个月)。然后,我们用这个贴现因子去折现未来的到期值。 给定信息: - 远期交割价(未来现流)F = 950元 - 现价P0 = 930元 - 无风险利率r = 6% / 12 = 0.5% - 时间跨度t = 6个月 计算步骤如下: 1. 计算贴现因子DF = (1 + r)^(-t) = (1 + 0.005)^(-6) 2. 远期价值PV = F * DF 3. 远期合约生效时的远期价格 = 交割价 - 现价 + PV 下面是一个简单的Python代码示例来计算这些数值: ```python # 定义变量 future_coupon = 950 # 未来现流 spot_price = 930 # 当前价格 risk_free_rate = 0.005 # 无风险利率 time_to_expiration = 6 # 半年时间 # 计算贴现因子 discount_factor = (1 + risk_free_rate)**(-time_to_expiration) # 计算远期价值 forward_value = future_coupon * discount_factor # 远期合约生效时的价格 forward_price_effective = future_coupon - spot_price + forward_value forward_value, forward_price_effective ``` 运行这段代码,你会得到远期价值和远期合约生效时的价格。请注意,这只是一个基本的理论计算,并未考虑到实际市场中的交易成本和其他因素。实际应用中可能需要进一步调整模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值