题目描述
SDUQD 旁边的滨海公园有 x 条长凳。第 i 个长凳上坐着 a_i 个人。这时候又有 y 个人将来到公园,他们将选择坐在某些公园中的长凳上,那么当这 y 个人坐下后,记k = 所有椅子上的人数的最大值,那么k可能的最大值mx和最小值mn分别是多少。
Input
第一行包含一个整数 x (1 <= x <= 100) 表示公园中长椅的数目
第二行包含一个整数 y (1 <= y <= 1000) 表示有 y 个人来到公园
接下来 x 个整数 a_i (1<=a_i<=100),表示初始时公园长椅上坐着的人数
Output
输出 mn 和 mx
Sample Input
3
7
1
6
1
Sample Output
6 13
Sample Explanation
最初三张椅子的人数分别为 1 6 1
接下来来了7个人。
可能出现的情况为{1 6 8},{1,7,7},…,{8,6,1}
相对应的k分别为8,7,…,8
其中,状态{1,13,1}的k = 13,为mx
状态{4,6,5}和状态{5,6,4}的k = 6,为mn
解题思路
此题题目很短,难度也不是很大,大意就是本来一些长凳上分别坐着一些人,后来又来了一些人,可以自由选择不同的长凳坐,问最后人数最多的那个长凳上的可能的最大值和最小值。
首先可明确的是想要确定最大值很容易,只需要让后面来的那些人全部都坐到他们来之前人数最多的那个椅子上。这样得到的便是最大值。
而直观的想,如果想要取得最小值,那么就要让后面来的那些人尽量坐到人少的椅子上,这样一平均下来最后人数最多的椅子上的人数也不会很多。转换成数学公式来思考的话,就是可以直接以后面那些人没来之前,人数最多的那个椅子上的人数为基准,计算出其他每个椅子上的人数和这个椅子上的人数的差值,并求和sum。如果后面来的人小于这个sum值,那么最后的最小值就是那个基准值。而如果大于这个sum值,那么就先把sum值减去,然后用剩下的差值平均分配到每个椅子上,最后的最大值就是结果。(注意可能存在分配不均匀,这时候要直接+1)
代码
#include<iostream>
#include<algorithm>
using namespace std