公园座位问题

该博客讨论了如何在公园的长凳上安排新来的人,以使人数最多长凳上的最大值(mx)和最小值(mn)达到最优。通过分析输入的初始长凳人数和新来的人数,可以确定 mx 是将所有人放在最满的长凳上,而 mn 的计算涉及差值分配。博主提供了解题思路和示例解释。
摘要由CSDN通过智能技术生成

题目描述

SDUQD 旁边的滨海公园有 x 条长凳。第 i 个长凳上坐着 a_i 个人。这时候又有 y 个人将来到公园,他们将选择坐在某些公园中的长凳上,那么当这 y 个人坐下后,记k = 所有椅子上的人数的最大值,那么k可能的最大值mx和最小值mn分别是多少。

Input

第一行包含一个整数 x (1 <= x <= 100) 表示公园中长椅的数目
第二行包含一个整数 y (1 <= y <= 1000) 表示有 y 个人来到公园
接下来 x 个整数 a_i (1<=a_i<=100),表示初始时公园长椅上坐着的人数

Output

输出 mn 和 mx

Sample Input

3
7
1
6
1

Sample Output

6 13

Sample Explanation

最初三张椅子的人数分别为 1 6 1
接下来来了7个人。
可能出现的情况为{1 6 8},{1,7,7},…,{8,6,1}
相对应的k分别为8,7,…,8
其中,状态{1,13,1}的k = 13,为mx
状态{4,6,5}和状态{5,6,4}的k = 6,为mn

解题思路

此题题目很短,难度也不是很大,大意就是本来一些长凳上分别坐着一些人,后来又来了一些人,可以自由选择不同的长凳坐,问最后人数最多的那个长凳上的可能的最大值和最小值。
首先可明确的是想要确定最大值很容易,只需要让后面来的那些人全部都坐到他们来之前人数最多的那个椅子上。这样得到的便是最大值。
而直观的想,如果想要取得最小值,那么就要让后面来的那些人尽量坐到人少的椅子上,这样一平均下来最后人数最多的椅子上的人数也不会很多。转换成数学公式来思考的话,就是可以直接以后面那些人没来之前,人数最多的那个椅子上的人数为基准,计算出其他每个椅子上的人数和这个椅子上的人数的差值,并求和sum。如果后面来的人小于这个sum值,那么最后的最小值就是那个基准值。而如果大于这个sum值,那么就先把sum值减去,然后用剩下的差值平均分配到每个椅子上,最后的最大值就是结果。(注意可能存在分配不均匀,这时候要直接+1

代码

#include<iostream>
#include<algorithm>
using namespace std
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值