飞桨PP 构建波士顿房价预测任务的神经网络模型

飞桨PP 构建波士顿房价预测任务的神经网络模型

图:构建神经网络/深度学习模型的基本步骤
利用十三个房价影响因素预测房价
在这里插入图片描述

线性回归模型

假设房价和各影响因素之间能够用线性关系来描述:
在这里插入图片描述
线性回归模型使用均方误差作为损失函数(Loss)
在这里插入图片描述

导入库

  • paddle.fluid:引入PaddlePaddle深度学习框架的fluid版本库;
  • numpy:NumPy是Python语言的一个扩展程序库。支持高端大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy的核心功能是"ndarray"(即n-dimensional array,多维数组)数据结构。
  • os: python的模块,可使用该模块对操作系统、目录、文件等进行操作
  • matplotlib.pyplot:用于生成图,在验证模型准确率和展示成本变化趋势时会使用到
import paddle
import paddle.fluid as fluid
import numpy as np
import os
import matplotlib.pyplot as plt

数据集

本次所用数据集已经集成在paddle.dataset中了,并且已经为我
们拆分成了训练集和测试集;我们可以通过调用
paddle.dataset.uci_housing.train()和
paddle.dataset.uci_housing.test()两个接口来获取训练集和测
试集,非常的方便。

数据提供器

接下来我们通过paddle.batch这个接口,来定义数据提供器:train_reader和test_reader。分别向我们的网络提供训练数据和测试数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值