飞桨PP 构建波士顿房价预测任务的神经网络模型
利用十三个房价影响因素预测房价
线性回归模型
假设房价和各影响因素之间能够用线性关系来描述:
线性回归模型使用均方误差作为损失函数(Loss)
导入库
- paddle.fluid:引入PaddlePaddle深度学习框架的fluid版本库;
- numpy:NumPy是Python语言的一个扩展程序库。支持高端大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy的核心功能是"ndarray"(即n-dimensional array,多维数组)数据结构。
- os: python的模块,可使用该模块对操作系统、目录、文件等进行操作
- matplotlib.pyplot:用于生成图,在验证模型准确率和展示成本变化趋势时会使用到
import paddle
import paddle.fluid as fluid
import numpy as np
import os
import matplotlib.pyplot as plt
数据集
本次所用数据集已经集成在paddle.dataset中了,并且已经为我
们拆分成了训练集和测试集;我们可以通过调用
paddle.dataset.uci_housing.train()和
paddle.dataset.uci_housing.test()两个接口来获取训练集和测
试集,非常的方便。
数据提供器
接下来我们通过paddle.batch这个接口,来定义数据提供器:train_reader和test_reader。分别向我们的网络提供训练数据和测试数据。