破片飞散角仿真
Gurney公式:计算破片初速度
v
0
=
2
E
β
1
+
β
2
v_0=\sqrt{2E}\sqrt{\frac{\beta}{1+\frac{\beta}{2}}}
v0=2E1+2ββ
- D = 6930 m / s D=6930m/s D=6930m/s,实验表明, 2 E = 0.52 + 0.28 D \sqrt{2E}=0.52+0.28D 2E=0.52+0.28D,这里单位是 m m / μ s mm/\mu s mm/μs,计算得 2 E = 2370 m / s \sqrt{2E}=2370m/s 2E=2370m/s
- β = C / M \beta=C/M β=C/M,为炸药与金属质量比,一般取 ( 0.1 , 5.0 ) (0.1,5.0) (0.1,5.0),假设 β = 1 \beta=1 β=1
- 计算 v 0 = 1935.0969 m / s v_0=1935.0969m/s v0=1935.0969m/s
Charran公式:考虑端部效应
v
0
(
x
)
=
k
⋅
2
E
β
F
(
x
)
1
+
0.5
β
F
(
x
)
v_0(x)=k\cdot \sqrt{2E} \sqrt{\frac{\beta F(x)}{1+0.5\beta F(x)}}
v0(x)=k⋅2E1+0.5βF(x)βF(x)
Shapiro公式:计算静态飞散角
α
i
=
9
0
∘
−
arctan
V
0
cos
μ
i
2
V
D
μ
i
=
π
2
−
μ
n
i
+
μ
f
i
\alpha_i=90^{\circ}-\arctan{\frac{V_0\cos\mu_i}{2V_D}}\\ \mu_i=\frac{\pi}{2}-\mu_{ni}+\mu_{fi}
αi=90∘−arctan2VDV0cosμiμi=2π−μni+μfi
-
假设战斗部是圆柱体,则其侧面图为长方形,近似为 μ n i = 9 0 ∘ , μ i = μ f i \mu_{ni}=90^{\circ},\mu_i=\mu_{fi} μni=90∘,μi=μfi即战斗部轴线与起爆器到第i枚碎片连线的夹角;
-
假设起爆点在圆柱体侧边,侧面二维图长方形的边中点;
-
V D V_D VD即装药爆速,这里使用最常见的TNT炸药,查阅资料得其 D = 6930 m / s D=6930m/s D=6930m/s
%a minor upgrade
%define parameter
D = 6930; %爆速
beta = 1; %装药质量比
sqrt_2E = 2370;
v_0 = sqrt_2E*sqrt(beta/(1+beta/2)); %初速
%define warhead
length_rec = 16; %战斗部的长度
width_rec = 8; %战斗部的宽度
burst_point_x = -8; %起爆点横坐标
burst_point_y = 0; %起爆点纵坐标
interval = 0.4; %破片单位间隔
%warhead modeling
burst_pos = [burst_point_x, burst_point_y];
a1 = [-length_rec/2, -width_rec/2];
a2 = [length_rec/2, -width_rec/2];
a3 = [length_rec/2, width_rec/2];
a4 = [-length_rec/2, width_rec/2];
A = [a1' a2' a3' a4' a1'];
%debris modeling
x = (-length_rec/2 : interval : length_rec/2);
x1 = (0 : interval : length_rec);
unit_v = [1 0];
t1 = width_rec/2*ones(1, length(x));
t2 = [x' t1']-[burst_point_x*ones(length(x), 1) burst_point_y*ones(length(x), 1)];
t3 = t2.*unit_v;
dot_t = t3(:, 1);
b_pos = ones(length(x), 2).*burst_pos;
dist_try = pdist2(b_pos, t2);
dist = dist_try(1, 1:length(x))';
%calculating mu_i and alpha_i
mu_i_mat = acos(dot_t./dist);
alhpa_i_mat = (pi/2-atan(v_0/2/D*dot_t./dist));
delta_x = cos(alhpa_i_mat);
delta_y = sin(alhpa_i_mat);
%visualization process
plot(A(1,:),A(2,:), 'linewidth', 1), hold on, axis equal;
axis([-10 10 -10 10]);
fill(A(1,:),A(2,:),'y');
grid on;
quiver(x,t1,delta_x',delta_y','b','linewidth',1);
quiver(x,-t1,delta_x',-delta_y','b','linewidth',1);
text(burst_point_x,burst_point_y,'\leftarrow burst point');
plot(burst_point_x,burst_point_y,'o','MarkerFaceColor', 'r','markersize',5)
title('破片飞散角矢量绘制');