Python实现KNN算法(鸢尾花数据)

.实验内容

        原生python实现knn分类算法,使用鸢尾花数据集。

.算法设计

      数据来源:http://archive.ics.uci.edu/ml/datasets/Iris

1.处理csv文件加载数据集,将读入数据转换为列表处理。根据random.Random()方法随机产生0~1之间的随机数与分割比进行比较,将数据分为训练集和测试集。

2.采用欧式距离法D=i=1n(xi-yi)2计算测试实例与训练实例的距离。

3.返回k个最近邻。增加一个参数length,确立测试集需要计算的四个数字维度,计算每一个测试实例到训练实例的距离,对所有距离进行排序,取其中最小距离值。

4.根据返回的邻居,预测结果。让近邻元素对预测属性投票,最终返回出现次数最多的标签作为预测结果。

5. 分类准确度,计算在测试数据集中算法正确预测的比例。

.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值