一.实验内容
原生python实现knn分类算法,使用鸢尾花数据集。
二.算法设计
数据来源:http://archive.ics.uci.edu/ml/datasets/Iris
1.处理csv文件加载数据集,将读入数据转换为列表处理。根据random.Random()方法随机产生0~1之间的随机数与分割比进行比较,将数据分为训练集和测试集。
2.采用欧式距离法D=i=1n(xi-yi)2
计算测试实例与训练实例的距离。
3.返回k个最近邻。增加一个参数length,确立测试集需要计算的四个数字维度,计算每一个测试实例到训练实例的距离,对所有距离进行排序,取其中最小距离值。
4.根据返回的邻居,预测结果。让近邻元素对预测属性投票,最终返回出现次数最多的标签作为预测结果。
5. 分类准确度,计算在测试数据集中算法正确预测的比例。
三.

最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=102558101&d=1&t=3&u=d8aff6d7b7014876bddfd27032f07016)
4921

被折叠的 条评论
为什么被折叠?



