快速幂算法

幂运算是一种常见的运算,最容易想到的累乘法的复杂度为O(n),但很多时候这并不够快,所以出现了快速幂运算。

(为什么不用内置函数pow?)有时候幂运算结果特别大,超出了long long的范围,这时候答案会要求你取模,这时候用pow函数是肯定不行的。

代码:

//求x的n次方
long long power(long long x,long long n)
{
    long long res = 1;
    while(n)
    {
        if(n & 1)
        {
            res *= x;
        }
        n = n >>1;  //右移一位,即缩小一倍
        x *=x;  //扩大一倍
    }
    return res;
}

int main()
{
    long long x,n;
    cout<<"请输入 x n ,用空格隔开"<<endl;
    cin>>x>>n;
    cout<< x << "的" << n << "次方等于 "<< power(x,n);
    return 0;
}

通过快速幂处理的一道题目:

题目描述 Description
有n头奶牛住在n个环形的牛圈,奶牛编号为0到n-1,牛圈编号也为0到n-1,i号牛住在第i号牛圈。
现在牛们想实施住宅滚动制度。每滚动一次,第0号圈的奶牛会顺时针搬到第m号牛圈中,第1号圈的奶牛会顺时针搬到第1+m号牛圈中,…,第n-m号圈的奶牛会顺时针搬到0号牛圈,
也就是说原来的第i号牛圈的奶牛会顺时针搬到i+m号牛圈。
试判断,进行了10^k轮滚动后,原来在x号圈的奶牛现在在几号牛圈。

输入描述 Input Description
一行,四个正整数,n m k x

输出描述 Output Description
10^k轮后,最初在第x个圈的奶牛所处牛圈的编号

样例输入 Sample Input
10 3 4 5

样例输出 Sample Output
5

数据范围及提示 Data Size & Hint
对于 30%的数据,0 < k < 7;
对于 80%的数据,0 < k < 10^7;
对于 100%的数据,1 < n < 1,000,000,0 < m < n,1 <= x <=n,0 < k < 10^9。

解析:本题通过普通的幂运算会超出long long 的表示范围,故只能通过快速幂来解决。

题解:

#include<iostream>

using namespace std;

long long n, x, m;

long long power(long long a, long long k)
{
	long long res = 1;
	while (k)
	{
		if (k & 1)
		{
			res *= a;
		}
		k = k >> 1;  //右移一位,即缩小一倍
		a *= a;  //扩大一倍
	}
	return res;
}

int main()
{
	long long k;
	cin >> n >> m >> k >> x;
	cout << (x%n + ((m%n)*(power(10, k) % n) % n)) % n;
	return 0;
}



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值