幂运算是一种常见的运算,最容易想到的累乘法的复杂度为O(n),但很多时候这并不够快,所以出现了快速幂运算。
(为什么不用内置函数pow?)有时候幂运算结果特别大,超出了long long的范围,这时候答案会要求你取模,这时候用pow函数是肯定不行的。
代码:
//求x的n次方
long long power(long long x,long long n)
{
long long res = 1;
while(n)
{
if(n & 1)
{
res *= x;
}
n = n >>1; //右移一位,即缩小一倍
x *=x; //扩大一倍
}
return res;
}
int main()
{
long long x,n;
cout<<"请输入 x n ,用空格隔开"<<endl;
cin>>x>>n;
cout<< x << "的" << n << "次方等于 "<< power(x,n);
return 0;
}
通过快速幂处理的一道题目:
题目描述 Description
有n头奶牛住在n个环形的牛圈,奶牛编号为0到n-1,牛圈编号也为0到n-1,i号牛住在第i号牛圈。
现在牛们想实施住宅滚动制度。每滚动一次,第0号圈的奶牛会顺时针搬到第m号牛圈中,第1号圈的奶牛会顺时针搬到第1+m号牛圈中,…,第n-m号圈的奶牛会顺时针搬到0号牛圈,
也就是说原来的第i号牛圈的奶牛会顺时针搬到i+m号牛圈。
试判断,进行了10^k轮滚动后,原来在x号圈的奶牛现在在几号牛圈。
输入描述 Input Description
一行,四个正整数,n m k x
输出描述 Output Description
10^k轮后,最初在第x个圈的奶牛所处牛圈的编号
样例输入 Sample Input
10 3 4 5
样例输出 Sample Output
5
数据范围及提示 Data Size & Hint
对于 30%的数据,0 < k < 7;
对于 80%的数据,0 < k < 10^7;
对于 100%的数据,1 < n < 1,000,000,0 < m < n,1 <= x <=n,0 < k < 10^9。
解析:本题通过普通的幂运算会超出long long 的表示范围,故只能通过快速幂来解决。
题解:
#include<iostream>
using namespace std;
long long n, x, m;
long long power(long long a, long long k)
{
long long res = 1;
while (k)
{
if (k & 1)
{
res *= a;
}
k = k >> 1; //右移一位,即缩小一倍
a *= a; //扩大一倍
}
return res;
}
int main()
{
long long k;
cin >> n >> m >> k >> x;
cout << (x%n + ((m%n)*(power(10, k) % n) % n)) % n;
return 0;
}