高等数学复习之幂指函数的解法(分部积分法详解)

看峁诗松《概率论与数理统计》习题6.2,即使看了答案也没怎么看明白???

答案: 

 这道题的关键,求幂指函数积分的问题,详见扩展。

1、E(x)= \int_{u}^{+\infty }x\frac{1}{\theta}e^{-\frac{x-\mu }{\theta }}dx根据分部积分的规律,将幂函数x看成是u,将指数函数e^{-\frac{x-\mu }{\theta }}看成是{\nu}'

第一问,用分部积分法勉强可以通过,关键是要确定v和u.和第一类换元法。

2、还是用分部积分法来解:这部分困扰着自己好几天,一直得不到正确的结果,其实是没看清楚第一问的形式。

再通过《概率论复习之关于点估计》中矩估计替换原理          

样本均值估计总体的数学期望E(x)=bar(x)

二阶样本矩代替二阶总体矩,所E(x^{2})=\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}

所以:u+\theta=\bar{x}         (\mu +\theta )^{2}+\theta ^{2}    =      \frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}  =     \frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}(二阶原点矩定义)

两个未知数,两个方程,求得\hat{\theta} = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}} 再代入第一个方程 \hat{\mu }=\bar{x}-\theta

 

扩展:

关于分部积分法,推导,详见《高等数学复习之不定积分的解法(部分分式解法,第二类换元法规律)》,这个应该没有问题。

但具体的规律性的东西是没有的,比如哪个当成u,哪个当成v的问题???之前只是记得化成一个好积分出来的形式,思想是没有错的,但遇到具体的问题,往往还是犯晕。

1、这里到底哪个看成是u,哪个看成是v呢??

先看下分部积分式子:\int \mu {\nu }'dx =  \int \mu d\nu  =   \mu \nu  -  \int \nu d\mu  =      \mu \nu  -  \int \nu {\mu }'dx

"反对幂指三“,按照这个顺序,靠后的就看成是v.这里要注意,不是只是看成v这么简单,要找到dv,实际就是告诉dv的结果,来求v(这个原函数,变相求了次积分).

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

guangod

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值