题表是中文,不再进行题目描述
首先分析问题,两只青蛙落到同一位置的问题可以抽象成两只青蛙从起始位置跳,跳出 L 后从头开始(相当于取模运算),也就是说问题就可以理解成两只青蛙从不同位置开始跳了 step 步后的坐标对 L 取模相同,即得到了如下方程
(x + m * step) % L = (y + n * step) % L
移项后得到如下方程
(n - m) * step + k * L = x - y
很明显对于上述方程而言,要想有解,需要 gcd(n - m, L) | x - y,如果不能整除则无解
如果可以整除,可以用扩展欧几里得求得一个特解
扩展欧几里得可以求一个 类似于 ax + by = gcd(a, b) 的特解,虽然本题没说明x - y = gcd(a, b),但是既然 x - y 是 gcd的整数倍,我们就可以把 x - y 变成 gcd 来求解,即方程左边乘以 gcd / (x - y) ,求得的解乘以 (x - y) / gcd 就是正确答案,但是并不能保证是正数,因此还需要处理一下,加上对于的 L 再取模即可
#include <cstdio>
#include <iostream>
#include <cmath>
typedef long long ll;
ll gcd(ll a, ll b, ll& x, ll& y){
if(b == 0){
x = 1;
y = 0;
return a;
}
ll d = gcd(b, a % b, x ,y);
ll z = x;
x = y;
y = z - y * (a / b);
return d;
}
ll x, y, n, m, L, t1, t2;
int main()
{
scanf("%lld %lld %lld %lld %lld", &x, &y, &m, &n, &L);
ll t = gcd(n - m, L, t1, t2);
if((x - y) % t){
puts("Impossible");
}
else{
t1 *= (x - y) / t;
t2 *= (x - y) / t;
while (t1 < 0){
t1 += ((- t1) / L + 1) * L;
}
printf("%lld\n", (t1 + L) % L);
}
return 0;
}