poj 1061 青蛙的约会 (线性同余方程)扩展欧几里得

题目链接

题表是中文,不再进行题目描述

首先分析问题,两只青蛙落到同一位置的问题可以抽象成两只青蛙从起始位置跳,跳出 L 后从头开始(相当于取模运算),也就是说问题就可以理解成两只青蛙从不同位置开始跳了 step 步后的坐标对 L 取模相同,即得到了如下方程

(x + m * step) % L = (y + n * step) % L

移项后得到如下方程

(n - m) * step + k * L = x - y

很明显对于上述方程而言,要想有解,需要 gcd(n - m, L) | x - y,如果不能整除则无解

如果可以整除,可以用扩展欧几里得求得一个特解

扩展欧几里得可以求一个 类似于 ax + by = gcd(a, b) 的特解,虽然本题没说明x - y = gcd(a, b),但是既然 x - y 是 gcd的整数倍,我们就可以把 x - y 变成 gcd 来求解,即方程左边乘以 gcd / (x - y) ,求得的解乘以 (x - y) / gcd 就是正确答案,但是并不能保证是正数,因此还需要处理一下,加上对于的 L 再取模即可

#include <cstdio>
#include <iostream>
#include <cmath>
typedef long long ll;
ll gcd(ll a, ll b, ll& x, ll& y){
	if(b == 0){
		x = 1;
		y = 0;
		return a;
	}
	ll d = gcd(b, a % b, x ,y);
	ll z = x;
	x = y;
	y = z - y * (a / b);
	return d;
}
ll x, y, n, m, L, t1, t2;
int main()
{
	scanf("%lld %lld %lld %lld %lld", &x, &y, &m, &n, &L);
	ll t = gcd(n - m, L, t1, t2);
	if((x - y) % t){
		puts("Impossible");
	}
	else{
		t1 *= (x - y) / t;
		t2 *= (x - y) / t;
		while (t1 < 0){
			t1 += ((- t1) / L + 1) * L;
		}
		printf("%lld\n", (t1 + L) % L);
	}
	return 0;
}
 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值