一:安装dvc
#pip安装
pip install dvc
pip install dvc[s3]
#conda安装,选择性的安装可选依赖项:dvc-s3, dvc-azure, dvc-gdrive, dvc-gs, dvc-oss, dvc-ssh
conda install -c conda-forge mamba # installs much faster than conda
mamba install -c conda-forge dvc
amba install -c conda-forge dvc-s3
二:项目文件夹初始化
#git初始化
$ mkdir example-get-started
$ cd example-get-started
$ git init
#dvc初始化
$ dvc init
初始化DVC之后,创建了一些应该添加到 Git
仓库的内部文件。
$ git status
Changes to be committed:
new file: .dvc/.gitignore
new file: .dvc/config
...
$ git commit -m "Initialize DVC"
ok,现在你已经准备好DVC了。 DVC的特性可以分为几个功能组件(数据和模型版本控制、访问与下载数据和模型、数据流水线、指标跟踪、更新训练参数以及可视化模型表现、机器学习实验管理)
三:下载文件
# 进入到之前初始化好的项目目录下
$ cd example-get-started
$ dvc get https://github.com/iterative/dataset-registry \
get-started/data.xml -o data/data.xml
四:跟踪文件
dvc add data/data.xml
通过以上命令,DVC 将关于添加的文件(或目录)的信息存储在名为data/data.xml.dvc
的特殊.dvc
文件中(这是一个人类可读格式的小文本文件)。这个元数据文件是原始数据文件的占位符,这样就可以像使用 Git 的源代码一样轻松地进行版本控制。同时,原始数据文件会被放在 .gitignore
文件中。
$ cat data/.gitignore
/data.xml
#dvc add 会将数据移动到项目的缓存中,并将其链接回工作区。
$ tree .dvc/cache
../.dvc/cache
└── a3
└── 04afb96060aad90176268345e10355
#我们刚刚添加的data.xml文件的hash值(a304afb...)决定了上面的缓存路径。
#如果你检查 data/data.xml.dvc,你也会在这里发现它:
$ cat data/data.xml.dvc
outs:
- md5: a304afb96060aad90176268345e10355
path: data.xml
将元数据文件添加到Git中进行跟踪。
$ git add data/data.xml.dvc data/.gitignore
$ git commit -m "Add raw data"
五:创建存储数据文件的远程存储库
您可以使用 dvc push
上传 DVC 跟踪的数据或模型文件,以便安全地远程存储它们。 这也意味着后面您可以使用 dvc pull
在其他环境中恢复它们。
首先,我们需要设置一个远程存储库的地址,DVC 支持许多远程存储类型,包括
Amazon S3
、SSH
、Google Drive
、Azure Blob Storage
和 HDFS
,从上图我们也可以看到,代码与模型和数据文件是分开存储的。
# 配置远程Git仓库
$ git remote add origin https://gitee.com/xxxx/dvc-samples.git
# 配置远程数据存储库(注:简单起见,这里我用的是本地的其他文件夹作为远程存储库,不推荐)
$ mkdir -p /home/lgd/dvc/local_remote_data_register
$ dvc remote add -d local_remote /home/lgd/dvc/local_remote_data_register
让我们看一下.dvc/config
配置文件的改变:
# 查看配置
$ cat .dvc/config
[core]
remote = local_remote
['remote "local_remote"']
url = /home/lgd/dvc/local_remote_data_register
所以需要git将改变的配置文件上传到仓库:
# 添加dvc配置文件到本地Git仓库
$ git add .dvc/config
$ git commit -m "Configure local remote storage"
# 或者使用以下命令代替上面两条命令
# git commit .dvc/config -m "Configure local remote"
可使用$ dvc remote list
查看已有的remote
六:将数据push到远程中
$ dvc push
注意:dvc push后面不能加[remote]会报错,dvc执行default的远程,这里和git不同!!!
您可以使用以下命令检查数据是否已存储在 DVC 远程存储库中:
$ ls -R /home/lgd/dvc/local_remote_data_register
/home/lgd/dvc/local_remote_data_register/:
a3
/home/lgd/dvc/local_remote_data_register/a3:
04afb96060aad90176268345e10355
通常,我们也需要 git commit
和 git push
对应的.dvc
文件,将.dvc
元数据文件提交本地仓库并推送到Git远程仓库,示例如下:
$ git push origin main
七:下载与恢复数据
将 DVC 跟踪的数据和模型文件存储在远程仓库之后,我们可以在需要时使用 dvc pull
将其下载到该项目的其他副本中。 通常,我们在 git clone
和 git pull
之后运行它。
git pull 和 git clone的区别可以看这篇文章,要用git pull语法的前提是你有该仓库权限。
$ git clone https://gitee.com/xxxx/dvc-samples.git
$ cd dvc-samples
$ git pull origin main
$ dvc pull
在本项目中恢复数据,示例如下:
$ cd example-get-started
# 假设我们删除了本地缓存的数据
$ rm -rf .dvc/cache
$ rm -f data/data.xml
# 恢复数据
$ dvc pull origin main
八:在版本之间进行切换
通常的工作流程是先使用git checkout(
切换分支或切换.dvc
文件版本),然后运行dvc checkout
以同步数据。
# 首先,获取数据集的先前一个版本,让我们回到数据的原始版本
$ git checkout HEAD~1
# 同步数据
$ dvc checkout
之后,让我们提交.dvc
文件到本地Git仓库(这次不需要做 dvc push
,因为这个原始版本的数据集已经保存在本地缓存和远程存储库了)。
$ git commit data/data.xml.dvc -m "Revert dataset updates"
$ git push origin main
九:总结
其实,从技术上来讲,DVC 甚至不是版本控制系统! .dvc
元数据文件内容定义了数据文件的版本,本质上是通过 Git 来提供版本控制。 DVC 反过来创建这些.dvc
文件,然后更新它们,并有效地同步工作空间中 DVC 跟踪的数据以匹配它们。