k 近邻加权平均

k 近邻(k-Nearest Neighbor,简称 kNN)学习是一种常用的监督学习方法, 其工作机制非常简单: 给定测试样本?基于某种距离度量找出训练集中与其最 靠近的 k 个训练样本,然后基于这 k 个"邻居"的信息来进行预测. 通常, 在分 类任务中可使用"投票法" 即选择这 k 个样本中出现最多的类别标记作为预 测结果;在回归任务中时使用"平均法" ,即将这 k 个样本的实值输出标记的 平均值作为预测结果;还可基于距离远近进行加权平均或加权投票,距离越近 的样本权重越大.
与前面介绍的学习方法相比, k 近邻学习有一个明显的不同之处: 它似乎 没有显式的训练过程!事实上,它是"懒惰学习" (lazy learning)的著名代表, 此类学习技术在训练阶段仅仅是把样本保存起来,训练时间开销为零,待收到 测试样本后再进行处理;相应的,那些在训练阶段就对样本进行学习处理的方 法,称为"急切学习" (eager learning).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值