吃了个串串,活动是摇四个筛子打折
1)摇到四个相同 6.8折
2)顺子7.8折
3)三个或者两个相同 8.8折
自己摇到了8.8折,回家的路上好奇各个折扣的概率,自己到底是百分之几。用纸笔算了半天没搞清楚,索性用MATLAB暴力求解(程序附在后面)
最后结果是,总共有1296种可能(考虑筛子顺序), 四个相同、三个相同、两个、无相同的个数分别为6+210+720+360=1296。穷举了所有的情况
并且也算了顺子的个数为72.
所以摇到8.8折的概率是 930/1296.
果然还是大多数人
PS.两个相同和三个相同的概率比想象高太多
aa = [];
for i = 1:6
for j = 1:6
for k = 1:6
for h = 1:6
aa = [aa; [i j k h]];
end
end
end
end
n_2 = 0; %两个筛子相同点数的个数
for i = 1:size(aa,1)
temp = sort(aa(i,:));
temp_2 = temp(2:end)-temp(1:end-1);
a_ = find(temp_2==0);
if length(a_)==1
n_2 = n_2+1;
end
end
n_3 = 0; %三个都相同
for i = 1:size(aa,1)
temp = sort(aa(i,:));
temp_2 = temp(2:end)-temp(1:end-1);
a_ = find(temp_2==0);
if length(a_)==2
n_3 = n_3+1;
end
end
n_4 = 0; %四个都相同
for i = 1:size(aa,1)
temp = sort(aa(i,:));
temp_2 = temp(2:end)-temp(1:end-1);
a_ = find(temp_2==0);
if length(a_)==3
n_4 = n_4+1;
end
end
n_1 = 0; %没有一个相同
for i = 1:size(aa,1)
temp = sort(aa(i,:));
temp_2 = temp(2:end)-temp(1:end-1);
a_ = find(temp_2==0);
if length(a_)==0
n_1 = n_1+1;
end
end
n_shunzi = 0;%顺子的个数
for i = 1:size(aa,1)
temp = sort(aa(i,:));
temp_2 = temp(2:end)-temp(1:end-1);
a_ = find(temp_2==1);
if length(a_)==3
n_shunzi = n_shunzi+1;
end
end