机器学习算法笔记:HMM隐马尔可夫模型

Hidden Markov Model

隐马尔可夫模型是一种概率图模型。机器学习模型可以从频率派和贝叶斯派两个方向考虑,在频率派的方法中的核心是优化问题,而在贝叶斯派的方法中,核心是积分问题,发展出一系列的积分方法:如变分推断,MCMC 等。

概率图模型最基本的模型可分为有向图(贝叶斯网络)和无向图(马尔可夫随机场),如果样本之间存在关联,可认为样本中附带时序信息,使得样本间不独立全同分布,这种模型就是动态模型,隐变量随着时间发生变化,观测变量也随之变化:

z1
z2
z3

根据状态变量的特点,可以分为:

  • HMM,状态变量(隐变量)是离散的,观测变量没有要求
  • Kalman 滤波,状态变量是连续的,线性的
  • 粒子滤波,状态变量是连续,非线性的
模型定义

HMM 用概率图表示为:

上图表示了三个时刻的隐变量变化,用 λ = ( π , A , B ) \color{blue}\lambda=(\pi,A,B) λ=(π,A,B) 表示,其中 π \color{blue}\pi π 为初始概率分布, A \color{blue}A A 为状态转移矩阵, B \color{blue}B B 为发射矩阵。

  • o t \color{blue}o_t ot 表示观测变量, O \color{blue}O O 为观测序列, V = − v 1 , v 2 , ⋯   , v M {\color{blue}V}=- {v_1,v_2,\cdots,v_M} V=v1,v2,,vM 表示观测值域(能取的值),
  • i t \color{blue}i_t it 表示状态变量, I \color{blue}I I 为状态序列, Q = q 1 , q 2 , ⋯   , q N {\color{blue}Q}={q_1,q_2,\cdots,q_N} Q=q1,q2,,qN 表示状态变量值域,
  • π = { π ( 1 ) , π ( 2 ) , ⋯   , π ( N ) } {\color{blue}\pi}=\{\pi(1),\pi(2),\cdots,\pi(N)\} π={π(1),π(2),,π(N)}表示初始状态, ∑ i = 1 N π ( i ) = 1 \sum^N_{i=1}\pi(i)=1 i=1Nπ(i)=1
  • A = ( a i j = p ( i t + 1 = q j ∣ i t = q i ) ) {\color{blue}A}=(a_{ij}=p(i_{t+1}=q_j|i_t=q_i)) A=(aij=p(it+1=qjit=qi)) 表示状态转移矩阵
  • B = ( b j ( k ) = p ( o t = v k ∣ i t = q j ) ) {\color{blue}B}=(b_j(k)=p(o_t=v_k|i_t=q_j)) B=(bj(k)=p(ot=vkit=qj)) 表示发射矩阵。
  • λ ( t ) = ( π ( t ) , A ( t ) , B ( t ) ) {\color{blue}\lambda^{(t)}}=(\pi^{(t)},A^{(t)},B^{(t)}) λ(t)=(π(t),A(t),B(t)) 表示 t t t 时刻参数
两个基本假设
  • 齐次 Markov 假设 p ( i t + 1 ∣ i t , i t − 1 , ⋯   , i 1 , o t , o t − 1 , ⋯   , o 1 ) = p ( i t + 1 ∣ i t ) p(i_{t+1}|i_t,i_{t-1},\cdots,i_1,o_t,o_{t-1},\cdots,o_1)=p(i_{t+1}|i_t) p(it+1it,it1,,i1,ot,ot1,,o1)=p(it+1it)

  • 观测独立假设 p ( o t ∣ i t , i t − 1 , ⋯   , i 1 , o t − 1 , ⋯   , o 1 ) = p ( o t ∣ i t ) p(o_t|i_t,i_{t-1},\cdots,i_1,o_{t-1},\cdots,o_1)=p(o_t|i_t) p(otit,it1,,i1,ot1,,o1)=p(otit)

三个任务

HMM的三个任务:

  • 1、Evaluation p ( O ∣ λ ) p(O|\lambda) p(Oλ),Forward-Backward 算法
  • 2、Learning λ = a r g m a x λ p ( O ∣ λ ) \lambda=\mathop{argmax}\limits_{\lambda}p(O|\lambda) λ=λargmaxp(Oλ),EM 算法(Baum-Welch)
  • 3、Decoding I = a r g m a x I p ( I ∣ O , λ ) I=\mathop{argmax}\limits_{I}p(I|O,\lambda) I=Iargmaxp(IO,λ),Vierbi 算法 预测问题: p ( i t + 1 ∣ o 1 , o 2 , ⋯   , o t ) 滤波问题: p ( i t ∣ o 1 , o 2 , ⋯   , o t ) \begin{aligned}&\text{预测问题:}p(i_{t+1}|o_1,o_2,\cdots,o_t)\\&\text{滤波问题:}p(i_t|o_1,o_2,\cdots,o_t)\end{aligned} 预测问题:p(it+1o1,o2,,ot)滤波问题:p(ito1,o2,,ot)

Evaluation

Evaluation 问题可表示为:
p ( O ∣ λ ) = ∑ I p ( I , O ∣ λ ) = ∑ I p ( O ∣ I , λ ) p ( I ∣ λ ) p(O|\lambda)=\sum\limits_{I}p(I,O|\lambda)=\sum\limits_{I}p(O|I,\lambda)p(I|\lambda) p(Oλ)=Ip(I,Oλ)=Ip(OI,λ)p(Iλ)

上式中:
p ( I ∣ λ ) = p ( i 1 , i 2 , ⋯   , i t ∣ λ ) = p ( i t ∣ i 1 , i 2 , ⋯   , i t − 1 , λ ) p ( i 1 , i 2 , ⋯   , i t − 1 ∣ λ ) p(I|\lambda)=p(i_1,i_2,\cdots,i_t|\lambda)=p(i_t|i_1,i_2,\cdots,i_{t-1},\lambda)p(i_1,i_2,\cdots,i_{t-1}|\lambda) p(Iλ)=p(i1,i2,,itλ)=p(iti1,i2,,it1,λ)p(i1,i2,,it1λ)

根据齐次 Markov 假设
p ( i t ∣ i 1 , i 2 , ⋯   , i t − 1 , λ ) = p ( i t ∣ i t − 1 ) = a i t − 1 i t p(i_t|i_1,i_2,\cdots,i_{t-1},\lambda)=p(i_t|i_{t-1})=a_{i_{t-1}i_t} p(iti1,i2,,it1,λ)=p(itit1)=ait1it

所以:
p ( I ∣ λ ) = π i 1 ∏ t = 2 T a i t − 1 , i t p(I|\lambda)=\pi_{i_1}\prod\limits_{t=2}^Ta_{i_{t-1},i_t} p(Iλ)=πi1t=2Tait1,it 又由于: p ( O ∣ I , λ ) = ∏ t = 1 T b i t ( o t ) p(O|I,\lambda)=\prod\limits_{t=1}^Tb_{i_t}(o_t) p(OI,λ)=t=1Tbit(ot)

于是:
p ( O ∣ λ ) = ∑ I π i 1 ∏ t = 2 T a i t − 1 , i t ∏ t = 1 T b i t ( o t ) = ∑ i ⋯ ∑ T ⏟ 复杂度 O ( N T ) π i 1 ∏ t = 2 T a i t − 1 , i t ∏ t = 1 T b i t ( o t ) \begin{aligned} p(O|\lambda)&=\sum\limits_{I}\pi_{i_1}\prod\limits_{t=2}^Ta_{i_{t-1},i_t}\prod\limits_{t=1}^Tb_{i_t}(o_t)\\ &=\underbrace{\sum\limits_{i}\cdots\sum\limits_{T}}_{\color{blue}\text{复杂度}O(N^T)} \pi_{i_1}\prod\limits_{t=2}^Ta_{i_{t-1},i_t}\prod\limits_{t=1}^Tb_{i_t}(o_t) \end{aligned} p(Oλ)=Iπi1t=2Tait1,itt=1Tbit(ot)=复杂度O(NT) iTπi1t=2Tait1,itt=1Tbit(ot)

上式 I I I 为状态序列,序列长度为 T T T,每个状态变量 i i i N N N 种状态,所以其复杂度为 O ( N T ) O(N^T) O(NT),计算量太大,要用更加简单的算法计算 p ( O ∣ λ ) p(O|\lambda) p(Oλ)

前向算法

α t ( i ) = p ( o 1 , o 2 , ⋯   , o t , i t = q i ∣ λ ) \alpha_t(i)=p(o_1,o_2,\cdots,o_t,i_t=q_i|\lambda) αt(i)=p(o1,o2,,ot,it=qiλ),所以 α T ( i ) = p ( O , i T = q i ∣ λ ) \alpha_T(i)=p(O,i_T=q_i|\lambda) αT(i)=p(O,iT=qiλ)则:
p ( O ∣ λ ) = ∑ i = 1 N p ( O , i T = q i ∣ λ ) = ∑ i = 1 N α T ( i ) p(O|\lambda)={\color{blue}\sum\limits_{i=1}^N}p(O,{\color{blue}i_T=q_i} |\lambda)=\sum\limits_{i=1}^N\alpha_T(i) p(Oλ)=i=1Np(O,iT=qiλ)=i=1NαT(i)

上式中,对状态变量 i T i_T iT 在其状态空间上求和 ∑ i = 1 N { i T = q i } = 1 \sum^N\limits_{i=1}\{i_T=q_i\}=1 i=1N{iT=qi}=1

推导 α t + 1 ( j ) \alpha_{t+1}(j) αt+1(j) α t ( i ) \alpha_{t}(i) αt(i)间的递推关系:
α t + 1 ( j ) = p ( o 1 , o 2 , ⋯   , o t + 1 , i t + 1 = q j ∣ λ ) = ∑ i = 1 N p ( o 1 , o 2 , ⋯   , o t + 1 , i t + 1 = q j , i t = q i ∣ λ ) = ∑ i = 1 N p ( o t + 1 ∣ o 1 , o 2 , ⋯   , i t + 1 = q j , i t = q i ∣ λ ) p ( o 1 , ⋯   , o t , i t = q i , i t + 1 = q j ∣ λ ) = ∑ i = 1 N p ( o t + 1 ∣ i t + 1 = q j ) p ( o 1 , ⋯   , o t , i t = q i , i t + 1 = q j ∣ λ ) 观测独立假设 = ∑ i = 1 N p ( o t + 1 ∣ i t + 1 = q j ) ⏟ b j ( o t ) p ( i t + 1 = q j ∣ o 1 , ⋯   , o t , i t = q i , λ ) ⏟ p ( i t + 1 = q j ∣ i t = q i , λ ) = a i j p ( o 1 , ⋯   , o t , i t = q i ∣ λ ) ⏟ α t ( i ) = ∑ i = 1 N b j ( o t ) a i j α t ( i ) \begin{aligned} {\color{blue}\alpha_{t+1}(j)}&=p(o_1,o_2,\cdots,o_{t+1},i_{t+1}=q_j|\lambda)\\ &={\color{blue}\sum\limits_{i=1}^N}p(o_1,o_2,\cdots,o_{t+1},i_{t+1}=q_j,{\color{blue}i_t=q_i|}\lambda)\\ &=\sum\limits_{i=1}^Np(o_{t+1}|o_1,o_2,\cdots,i_{t+1}=q_j,i_t=q_i|\lambda)p(o_1,\cdots,o_t,i_t=q_i,i_{t+1}=q_j|\lambda) \\ &=\sum\limits_{i=1}^N{\color{blue}p(o_{t+1}|i_{t+1}=q_j)}p(o_1,\cdots,o_t,i_t=q_i,i_{t+1}=q_j|\lambda)\quad\color{blue}\text{观测独立假设}\\ &=\sum\limits_{i=1}^N\underbrace{p(o_{t+1}|i_{t+1}=q_j)}_{\color{blue}b_{j}(o_t)}\underbrace{p({\color{blue}i_{t+1}=q_j}|o_1,\cdots,o_t,{\color{blue}i_t=q_i},\lambda)}_{\color{blue}p(i_{t+1}=q_j|i_t=q_i,\lambda)=a_{ij}} \underbrace{p(o_1,\cdots,o_t,i_t=q_i|\lambda)}_{\color{blue}\alpha_t(i)}\\ &=\sum\limits_{i=1}^Nb_{j}(o_t)a_{ij}{\color{blue}\alpha_t(i)} \end{aligned} αt+1(j)=p(o1,o2,,ot+1,it+1=qjλ)=i=1Np(o1,o2,,ot+1,it+1=qj,it=qiλ)=i=1Np(ot+1o1,o2,,it+1=qj,it=qiλ)p(o1,,ot,it=qi,it+1=qjλ)=i=1Np(ot+1it+1=qj)p(o1,,ot,it=qi,it+1=qjλ)观测独立假设=i=1Nbj(ot) p(ot+1it+1=qj)p(it+1=qjit=qi,λ)=aij p(it+1=qjo1,,ot,it=qi,λ)αt(i) p(o1,,ot,it=qiλ)=i=1Nbj(ot)aijαt(i)

利用齐次 Markov 假设得到递推公式,也称为前向算法。

后向算法

定义:
β t ( i ) = p ( o t + 1 , ⋯ , o T ∣ i t = q i , λ ) ⋮ β 1 ( i ) = p ( o 2 , ⋯ , o T ∣ i 1 = q i , λ ) \beta_t(i)=p(o_{t+1},\cdots,o_T|{\color{blue}i_t}=q_i,\lambda)\\ \vdots\\ \beta_1(i)=p(o_{2},\cdots,o_T|{\color{blue}i_1}=q_i,\lambda) βt(i)=p(ot+1,oTit=qi,λ)β1(i)=p(o2,oTi1=qi,λ)

则有:
p ( O ∣ λ ) = p ( o 1 , ⋯   , o T ∣ λ ) = ∑ i = 1 N p ( o 1 , o 2 , ⋯   , o T , i 1 = q i ∣ λ ) 引入 i 1 = ∑ i = 1 N p ( o 1 , o 2 , ⋯   , o T ∣ i 1 = q i , λ ) p ( i 1 = q i ) ⏟ 初始概率分布 π i = ∑ i = 1 N p ( o 1 , o 2 , ⋯   , o T ∣ i 1 = q i , λ ) π i = ∑ i = 1 N p ( o 1 ∣ o 2 , ⋯   , o T , i 1 = q i , λ ) ⏟ 观测独立假设 p ( o 2 , ⋯   , o T ∣ i 1 = q i , λ ) ⏟ β 1 ( i ) π i = ∑ i = 1 N b i ( o 1 ) π i β 1 ( i ) \begin{aligned} {\color{blue}p(O|\lambda)}&=p(o_1,\cdots,o_T|\lambda)\\ &=\sum\limits_{i=1}^Np(o_1,o_2,\cdots,o_T,i_1=q_i|\lambda)\qquad\color{blue}\text{引入$i_1$}\\ &=\sum\limits_{i=1}^Np(o_1,o_2,\cdots,o_T|i_1=q_i,\lambda)\underbrace{p(i_1=q_i)}_{\color{blue}\text{初始概率分布}\pi_i}\\ &=\sum\limits_{i=1}^Np(o_1,o_2,\cdots,o_T|i_1=q_i,\lambda)\pi_i\\ &=\sum\limits_{i=1}^N\underbrace{p({\color{blue}o_1}|o_2,\cdots,o_T,{\color{blue}i_1=q_i},\lambda)}_{\color{blue}\text{观测独立假设}}\underbrace{p(o_2,\cdots,o_T|i_1=q_i,\lambda)}_{\color{blue}\beta_1(i)}\pi_i\\ &=\sum\limits_{i=1}^Nb_i(o_1)\pi_i{\color{blue}\beta_1(i) } \end{aligned} p(Oλ)=p(o1,,oTλ)=i=1Np(o1,o2,,oT,i1=qiλ)引入i1=i=1Np(o1,o2,,oTi1=qi,λ)初始概率分布πi p(i1=qi)=i=1Np(o1,o2,,oTi1=qi,λ)πi=i=1N观测独立假设 p(o1o2,,oT,i1=qi,λ)β1(i) p(o2,,oTi1=qi,λ)πi=i=1Nbi(o1)πiβ1(i)

β 1 ( i ) \beta_1(i) β1(i) 同样可以通过递推公式得到:
β t ( i ) = p ( o t + 1 , ⋯   , o T ∣ i t = q i ) = ∑ j = 1 N p ( o t + 1 , o t + 2 , ⋯   , o T , i t + 1 = q j ∣ i t = q i ) = ∑ j = 1 N p ( o t + 1 , ⋯   , o T ∣ i t + 1 = q j , i t = q i ) p ( i t + 1 = q j ∣ i t = q i ) = ∑ j = 1 N p ( o t + 1 , ⋯   , o T ∣ i t + 1 = q j ) a i j = ∑ j = 1 N p ( o t + 1 ∣ o t + 2 , ⋯   , o T , i t + 1 = q j ) p ( o t + 2 , ⋯   , o T ∣ i t + 1 = q j ) a i j = ∑ j = 1 N b j ( o t + 1 ) a i j β t + 1 ( j ) \begin{aligned} {\color{blue}\beta_t(i)}&=p(o_{t+1},\cdots,o_T|i_t=q_i)\\ &=\sum\limits_{j=1}^Np(o_{t+1},o_{t+2},\cdots,o_T,i_{t+1}=q_j|i_t=q_i)\\ &=\sum\limits_{j=1}^Np(o_{t+1},\cdots,o_T|i_{t+1}=q_j,i_t=q_i)p(i_{t+1}=q_j|i_t=q_i)\\ &=\sum\limits_{j=1}^Np(o_{t+1},\cdots,o_T|i_{t+1}=q_j)a_{ij}\\ &=\sum\limits_{j=1}^Np(o_{t+1}|o_{t+2},\cdots,o_T,i_{t+1}=q_j)p(o_{t+2},\cdots,o_T|i_{t+1}=q_j)a_{ij}\\ &=\sum\limits_{j=1}^Nb_j(o_{t+1})a_{ij}{\color{blue}\beta_{t+1}(j) } \end{aligned} βt(i)=p(ot+1,,oTit=qi)=j=1Np(ot+1,ot+2,,oT,it+1=qjit=qi)=j=1Np(ot+1,,oTit+1=qj,it=qi)p(it+1=qjit=qi)=j=1Np(ot+1,,oTit+1=qj)aij=j=1Np(ot+1ot+2,,oT,it+1=qj)p(ot+2,,oTit+1=qj)aij=j=1Nbj(ot+1)aijβt+1(j)

上述两种算法的复杂度均为 O ( T N 2 ) O(TN^2) O(TN2),使得计算量大大降低。

Learning

为了学习得到参数的最优值,要用到 MLE : λ M L E = a r g m a x λ p ( O ∣ λ ) \lambda_{MLE}=\mathop{argmax}\limits_\lambda p(O|\lambda) λMLE=λargmaxp(Oλ)

上式难以直接求解,需要采用 EM 算法(这里也叫 Baum Welch 算法)进行迭代求解,EM 算法的迭代公式为: θ t + 1 = a r g m a x θ ∫ z log ⁡ p ( X , Z ∣ θ ) p ( Z ∣ X , θ t ) d z \theta^{t+1}=\mathop{argmax}\limits_{\theta}\int_z\log p(X,Z|\theta)p(Z|X,\theta^t)dz θt+1=θargmaxzlogp(X,Zθ)p(ZX,θt)dz

上式 X X X 是观测变量, Z Z Z 是隐变量序列, θ \theta θ 为模型参数,分别与这里的 O , I , λ \color{blue}O,I,\lambda O,I,λ 对应,于是:
λ t + 1 = a r g m a x λ ∑ I log ⁡ p ( O , I ∣ λ ) p ( I ∣ O , λ t ) = a r g m a x λ ∑ I log ⁡ p ( O , I ∣ λ ) p ( O , I ∣ λ t ) p ( O , λ t ) 框中 O 为 λ 无关项 = a r g m a x λ ∑ I log ⁡ p ( O , I ∣ λ ) p ( O , I ∣ λ t ) \begin{aligned} \lambda^{t+1}&=\mathop{argmax}\limits_\lambda\sum\limits_I\log p(O,I|\lambda)p(I|O,\lambda^t)\\ &=\mathop{argmax}\limits_\lambda\sum\limits_I\log p(O,I|\lambda)\frac{p(O,I|\lambda^t)}{\boxed{p(O,\lambda^t)}} \quad_{\color{blue}\text{框中$O$为$\lambda$无关项}}\\ &=\mathop{argmax}\limits_\lambda\sum\limits_I\log p(O,I|\lambda)p(O,I|\lambda^t) \end{aligned} λt+1=λargmaxIlogp(O,Iλ)p(IO,λt)=λargmaxIlogp(O,Iλ)p(O,λt)p(O,Iλt)框中Oλ无关项=λargmaxIlogp(O,Iλ)p(O,Iλt)

上式中 p ( O ∣ λ t ) p(O|\lambda^t) p(Oλt) λ \lambda λ 无关,去掉该项不影响参数 λ \lambda λ 的优化。

由 Evaluation 中的推导可知:
Q ( λ , λ t ) = ∑ I log ⁡ p ( O , I ∣ λ ) p ( O , I ∣ λ t ) = ∑ I [ log ⁡ π i 1 + ∑ t = 2 T log ⁡ a i t − 1 , i t + ∑ t = 1 T log ⁡ b i t ( o t ) ] p ( O , I ∣ λ t ) \begin{aligned}Q(\lambda,\lambda^{t}) &=\sum\limits_I\log p(O,I|\lambda)p(O,I|\lambda^t)\\ &=\sum\limits_I[\log \pi_{i_1}+\sum\limits_{t=2}^T\log a_{i_{t-1},i_t}+\sum\limits_{t=1}^T\log b_{i_t}(o_t)]p(O,I|\lambda^t) \end{aligned} Q(λ,λt)=Ilogp(O,Iλ)p(O,Iλt)=I[logπi1+t=2Tlogait1,it+t=1Tlogbit(ot)]p(O,Iλt)

提取上式中 π \color{blue}\boxed\pi π 相关项:
π t + 1 = a r g m a x π ∑ I [ log ⁡ π i 1 p ( O , I ∣ λ t ) ] = a r g m a x π ∑ I [ log ⁡ π i 1 ⋅ p ( O , i 1 , i 2 , ⋯   , i T ∣ λ t ) ] = a r g m a x π ∑ i 1 ∑ i 2 ⋯ ∑ i T [ log ⁡ π i 1 ⋅ p ( O , i 1 , i 2 , ⋯   , i T ∣ λ t ) ] ⏟ 相当于对 i 2 , i 2 , ⋯   , i T  求边缘分布 = a r g m a x π ∑ i 1 [ log ⁡ π i 1 ⋅ p ( O , i 1 ∣ λ t ) ] \begin{aligned}\pi^{t+1}&=\mathop{argmax}\limits_\pi\sum\limits_I[\log \pi_{i_1}p(O,I|\lambda^t)]\\ &=\mathop{argmax}\limits_\pi\sum\limits_I[\log \pi_{i_1}\cdot p(O,i_1,i_2,\cdots,i_T|\lambda^t)] \\ &=\mathop{argmax}\limits_\pi\sum\limits_{i_1} \underbrace{ \sum\limits_{i_2}\cdots\sum\limits_{i_T}[\log \pi_{i_1}\cdot p(O,i_1,i_2,\cdots,i_T|\lambda^t)] }_{\color{blue}\text{相当于对$i_2,i_2,\cdots,i_T$ 求边缘分布}}\\ &=\mathop{argmax}\limits_\pi\sum\limits_{i_1}[\log \pi_{i_1}\cdot p(O,i_1|\lambda^t)] \end{aligned} πt+1=πargmaxI[logπi1p(O,Iλt)]=πargmaxI[logπi1p(O,i1,i2,,iTλt)]=πargmaxi1相当于对i2,i2,,iT 求边缘分布 i2iT[logπi1p(O,i1,i2,,iTλt)]=πargmaxi1[logπi1p(O,i1λt)]

上式中: i 1 i_1 i1 N N N个状态: i 1 = q i i_1=q_i i1=qi π \pi π 的约束条件 s t : ∑ i π i = 1 st:\sum\limits_i\pi_i=1 st:iπi=1,可定义 Lagrange 函数: L ( π , η ) = ∑ i = 1 N log ⁡ π i ⋅ p ( O , i 1 = q i ∣ λ t ) + η ( ∑ i = 1 N π i − 1 ) ⏟ l i L(\pi,\eta)=\sum\limits_{i=1}^N\underbrace{\log \pi_i\cdot p(O,i_1=q_i|\lambda^t)+\eta(\sum\limits_{i=1}^N\pi_i-1)}_{\color{blue}l_i} L(π,η)=i=1Nli logπip(O,i1=qiλt)+η(i=1Nπi1)

对求和符号中的被求和项求偏导:
∂ l i ∂ π i = 1 π i p ( O , i 1 = q i ∣ λ t ) + η = 0 \frac{\partial l_i}{\partial\pi_i}=\frac{1}{\pi_i}p(O,i_1=q_i|\lambda^t)+\eta=0 πili=πi1p(O,i1=qiλt)+η=0

对上式求和:
∂ L ∂ π i = ∑ i = 1 N p ( O , i 1 = q i ∣ λ t ) + π i η = 0 ⇒ η = − p ( O ∣ λ t ) \frac{\partial L}{\partial\pi_i}=\sum\limits_{i=1}^Np(O,i_1=q_i|\lambda^t)+\pi_i\eta=0\\ \Rightarrow\eta=-p(O|\lambda^t) πiL=i=1Np(O,i1=qiλt)+πiη=0η=p(Oλt)

于是可得到:
π i t + 1 = p ( O , i 1 = q i ∣ λ t ) p ( O ∣ λ t ) {\color{blue}\pi_i^{t+1}}=\frac{p(O,i_1=q_i|\lambda^t)}{p(O|\lambda^t)} πit+1=p(Oλt)p(O,i1=qiλt)

Decoding

Decoding 问题表示为:
I = a r g m a x I p ( I ∣ O , λ ) I=\mathop{argmax}\limits_{I}p(I|O,\lambda) I=Iargmaxp(IO,λ)

就是找到一个由 q i q_i qi 组成的序列,使得概率最大,可采用动态规划的思想求解

定义:
δ t ( i ) = max ⁡ i 1 , ⋯   , i t − 1 p ( o 1 , ⋯   , o t , i 1 , ⋯   , i t − 1 , i t = q i ) \delta_{t}(i)=\max\limits_{i_1,\cdots,i_{t-1}}p(o_1,\cdots,o_t,i_1,\cdots,i_{t-1},i_t=q_i) δt(i)=i1,,it1maxp(o1,,ot,i1,,it1,it=qi)

则: δ t + 1 ( j ) = max ⁡ 1 ≤ i ≤ N δ t ( i ) a i j b j ( o t + 1 ) \delta_{t+1}(j)=\max\limits_{1\le i\le N}\delta_t(i)a_{ij}\color{blue}b_j(o_{t+1}) δt+1(j)=1iNmaxδt(i)aijbj(ot+1)

从上一步到下一步的概率再求最大值,记录序列的路径(每个时刻对应状态 q i q_i qi的下标):
ψ t + 1 ( j ) = a r g m a x 1 ≤ i ≤ N δ t ( i ) a i j \psi_{t+1}(j)=\mathop{argmax}\limits_{1\le i\le N}\delta_t(i)a_{ij} ψt+1(j)=1iNargmaxδt(i)aij

小结

HMM 是一种动态模型,是由混合树形模型和时序结合起来的一种模型(类似 GMM + Time)。对于类似 HMM 的这种状态空间模型,普遍的除了学习任务(采用 EM )外,还有推断任务,推断任务包括:

  • 解码 Decoding p ( z 1 , z 2 , ⋯   , z t ∣ x 1 , x 2 , ⋯   , x t ) p(z_1,z_2,\cdots,z_t|x_1,x_2,\cdots,x_t) p(z1,z2,,ztx1,x2,,xt)

  • 似然概率 p ( X ∣ θ ) p(X|\theta) p(Xθ)

  • 滤波 p ( z t ∣ x 1 , ⋯   , x t ) p(z_t|x_1,\cdots,x_t) p(ztx1,,xt),Online p ( z t ∣ x 1 : t ) = p ( x 1 : t , z t ) p ( x 1 : t ) = C α t ( z t ) p(z_t|x_{1:t})=\frac{p(x_{1:t},z_t)}{p(x_{1:t})}=C\alpha_t(z_t) p(ztx1:t)=p(x1:t)p(x1:t,zt)=Cαt(zt)

  • 平滑 p ( z t ∣ x 1 , ⋯   , x T ) p(z_t|x_1,\cdots,x_T) p(ztx1,,xT),Offline p ( z t ∣ x 1 : T ) = p ( x 1 : T , z t ) p ( x 1 : T ) = α t ( z t ) p ( x t + 1 : T ∣ x 1 : t , z t ) p ( x 1 : T ) p(z_t|x_{1:T})=\frac{p(x_{1:T},z_t)}{p(x_{1:T})}=\frac{\alpha_t(z_t)p(x_{t+1:T}|x_{1:t},z_t)}{p(x_{1:T})} p(ztx1:T)=p(x1:T)p(x1:T,zt)=p(x1:T)αt(zt)p(xt+1:Tx1:t,zt) 根据概率图的条件独立性,有: p ( z t ∣ x 1 : T ) = α t ( z t ) p ( x t + 1 : T ∣ z t ) p ( x 1 : T ) = C α t ( z t ) β t ( z t ) p(z_t|x_{1:T})=\frac{\alpha_t(z_t)p(x_{t+1:T}|z_t)}{p(x_{1:T})}=C\alpha_t(z_t)\beta_t(z_t) p(ztx1:T)=p(x1:T)αt(zt)p(xt+1:Tzt)=Cαt(zt)βt(zt) 这个算法叫做前向后向算法。

  • 预测 p ( z t + 1 , z t + 2 ∣ x 1 , ⋯   , x t ) , p ( x t + 1 , x t + 2 ∣ x 1 , ⋯   , x t ) p(z_{t+1},z_{t+2}|x_1,\cdots,x_t),p(x_{t+1},x_{t+2}|x_1,\cdots,x_t) p(zt+1,zt+2x1,,xt),p(xt+1,xt+2x1,,xt) p ( z t + 1 ∣ x 1 : t ) = ∑ z t p ( z t + 1 , z t ∣ x 1 : t ) = ∑ z t p ( z t + 1 ∣ z t ) p ( z t ∣ x 1 : t ) p(z_{t+1}|x_{1:t})=\sum_{z_t}p(z_{t+1},z_t|x_{1:t})=\sum\limits_{z_t}p(z_{t+1}|z_t)p(z_t|x_{1:t}) p(zt+1x1:t)=ztp(zt+1,ztx1:t)=ztp(zt+1zt)p(ztx1:t) p ( x t + 1 ∣ x 1 : t ) = ∑ z t + 1 p ( x t + 1 , z t + 1 ∣ x 1 : t ) = ∑ z t + 1 p ( x t + 1 ∣ z t + 1 ) p ( z t + 1 ∣ x 1 : t ) p(x_{t+1}|x_{1:t})=\sum\limits_{z_{t+1}}p(x_{t+1},z_{t+1}|x_{1:t})=\sum\limits_{z_{t+1}}p(x_{t+1}|z_{t+1})p(z_{t+1}|x_{1:t}) p(xt+1x1:t)=zt+1p(xt+1,zt+1x1:t)=zt+1p(xt+1zt+1)p(zt+1x1:t)

参考文献

【1】隐马尔可夫模型
【2】NLP —— 图模型(一)隐马尔可夫模型(Hidden Markov model,HMM)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值