感知机学习笔记

2.1 感知机模型

感知机是二分类的线性分类模型,输入为实例的特征向量,输出为实例的类别(取+1或-1)。感知机对应于输入空间中将实例划分为两类的分离超平面。

由输入空间到输出空间的如下函数
f ( x ) = s i g n ( w ⋅ x + b ) f(x) = sign(w \cdot x + b) f(x)=sign(wx+b)
称为感知机。

其中 w w w b b b 是模型的参数, w ∈ R n w \in R^n wRn称为权值(weight),或权值向量(weight vector),b称为偏置(bias), w ⋅ x w \cdot x wx表示为 w w w x x x的内积

sign是符号函数,即
s i g n ( x ) = { + 1 , x > = 0 − 1 , x < 0 sign(x)= \begin{cases} +1, x>=0 \\ -1, x<0 \end{cases} sign(x)={+1,x>=01,x<0
感知机是一种线性分类模型,属于判别模型。

超平面对应于线性方程
w ⋅ x + b = 0 w \cdot x + b = 0 wx+b=0
​ 其中, w w w是超平面 S S S的法向量, b b b是超平面的截距。这个超平面将特征空间花费为两个部分,位于两部分的点,分别被分为正、负两类。因此,超平面 S S S称为分离超平面,如图1所示。

在这里插入图片描述

​ 其实就是在学习参数 w w w b b b,确定了参数 w w w b b b,超平面也就确定了,那么以后来的数据,如果大于等于0就分类到+1,如果小于0就分类为 -1。

2.2 感知机学习策略

为了确定感知机模型参数 w , b w,b wb ,需要确定一个学习策略,即定义(经验)损失函数并将损失函数极小化。

感知机所采用的损失函数是误分类点到超平面 S S S的总距离。为此,首先写出输入空间 R n R^n Rn中任一点 x 0 x_0 x0到超平面的距离:
1 ∥ w ∥ ∣ w ⋅ x 0 + b ∣ \frac{1}{\|w\|} |w \cdot x_0 + b| w1wx0+b
对于误分类的数据 ( x i , y i ) (x_i,y_i) (xi,yi) 来说,
− y i ( w ⋅ x i + b ) > 0 -y_i(w \cdot x_i + b) > 0 yi(wxi+b)>0
成立。因为当数据 y i y_i yi为+1的时候,你误分类为-1,即 w ⋅ x i + b < 0 w \cdot x_i + b < 0 wxi+b<0 ,所以满足 − y i ( w ⋅ x i + b ) > 0 -y_i(w \cdot x_i + b) > 0 yi(wxi+b)>0,反之同理

因此可以把绝对值去掉,变成:

− 1 ∥ w ∥ y i ( w ⋅ x i + b ) - \frac{1}{\|w\|} y_i(w \cdot x_i + b) w1yi(wxi+b)
这样,假设超平面 S S S的误分类点集合为M,那么所有误分类点到超平面S的总距离为:
− 1 ∥ w ∥ ∑ x i ∈ M y i ( w ⋅ x i + b ) - \frac{1}{\|w\|} \sum_{x_i \in M} y_i(w \cdot x_i + b) w1xiMyi(wxi+b)
不考虑 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} w1 ,就能得到感知机学习的损失函数。

所以,感知机学习的损失函数定义为
L ( w , b ) = ∑ x i ∈ M y i ( w ⋅ x i + b ) L(w,b) = \sum_{x_i \in M} y_i(w \cdot x_i + b) L(w,b)=xiMyi(wxi+b)
其中,M为误分类的点的集合,这个损失函数就是感知机学习的经验损失函数,感知机的学习的策略是极小化损失函数
min ⁡ w , b L ( w , b ) = min ⁡ w , b ∑ x i ∈ M y i ( w ⋅ x i + b ) \min_{w,b}L(w,b) =\min_{w,b} \sum_{x_i \in M} y_i(w \cdot x_i + b) w,bminL(w,b)=w,bminxiMyi(wxi+b)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值