【论文】个性化对话系统论文

本文介绍了《Personlization in Goal-oriented Dialog》论文,研究如何将个性化融入目标导向的对话系统。文章提出新数据集,通过多任务学习改进模型,实现不同用户群体的个性化推荐和对话风格。实验表明,共享特征的单一模型在各种用户配置下优于独立模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Personlization in Goal-oriented Dialog》(Chaitanya K. Joshi,EPFL(洛桑联邦理工学院),2017NIPS)
本篇源码已公开,地址:https://github.com/chaitjo/personalized-dialog/tree/master/MemN2N-split-memory

本论文对bAbI对话数据集进行扩展,提供了一个新的数据集。

Motivation

  • Personalization is key to creating conversational agents, and incorporating personalization into end-to-end trained neural dialog systems is a largely unexplored topic.

Contribution

  • Present a new dataset of goal-oriented dialogs.
  • Propose modifications to the architecture which enable personalization.
  • Investigate personalization in dialog as a multi-task learning problem, and show that a single model which shares features among various profiles outperforms separate models for each profile.

Method

数据部分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值