线性代数的本质 - 02 - 线性组合、张成的空间与基

一种有趣的方式看待坐标

当看到一对描述向量的数时,如 (3,2) ( 3 , − 2 ) 。把它的每个坐标看作是一个标量,也就是说它们如何压缩或拉伸一个向量。在xy坐标系中有两个特殊向量,i-hat 和 j-hat, 也就是xy两个方向的单位向量。从这一角度看, (3,2) ( 3 , − 2 ) 就是两个经过缩放的向量的和。

这里写图片描述

i-hat和j-hat在坐标系中异常重要,被称为坐标系的“基向量”,合起来成为坐标系的基。任何一个向量都是由基向量拉伸或缩放组合而来的。

如果选择不同的基向量会怎么样?

假如我们选一个指向右上方,一个指向右下方的向量,这两个向量同样可以表示出所有的二维向量。但是对于同一个向量,用这组基表示的结果和用i-hat、j-hat表示的结果在数字上肯定不同。也就是说,用数字表示一个向量时,数字的大小依赖于我们正在使用的基。

接下来考虑“线性组合”这一概念,什么是线性组合?

  • 两个向量标量乘法之和的结果被称为这两个向量的线性组合

这里写图片描述

“线性”和“直线”又有什么关系?我们可以这样考虑这个问题:如果固定其中一个标量,让另一个标量自由变化,所产生的向量的终点会描出一条直线。

如果让两个向量同时变化,会出现三种情况:

  1. 大部分情况,对于一对初始向量,你能到达平面中的每一个点。
  2. 当两个初始向量刚好共线时,就只能得到一条直线上的所有点。
  3. 当两个向量都是零向量时,就只能乖乖地呆在原点了。

所以有了一个新术语:

  • 所有可以表示为给定向量线性组合的向量集合,被称为给定向量张成(span)的空间。

这里写图片描述

所以,我们可以这样说:

  • 对于不共线的两个向量,它们的张成空间就是一个平面。
  • 共线的向量的张成空间就是一条直线。

三维空间考虑张成空间

在三维空间取两个指向不同方向的向量

这里写图片描述

根据之前的讨论,我们知道,这两个向量的张成空间是一个过原点的平面。

这里写图片描述

那么如果我们再加上第三个向量,它们张成的空间又是什么样的呢?

这里同样分两种情况:

  1. 如果第三个向量恰好落在前两个向量所张成的平面上,它们的张成空间还是那个平面。换句话说,引入第三个向量到线性组合中并没有让你“走得更远”。
    这里写图片描述

  2. 如果第三个向量没在前两个向量张成的平面里,当你缩放第三个向量的时候,它将前两个向量张成的平面沿着它的方向来回移动,从而扫过整个空间。换句话说,你完全利用了第三个向量,从而得到三维空间中所有的向量。

这里写图片描述

回到“线性相关”的概念,现在我们可以这样说:

  • 当你有一组向量,你可以移除其中的一个而使张成空间不变,相关术语称它们是“线性相关”的。

另一种表述方法是:

  • 一个向量可以表示为其它向量的线性组合,即落在了其它向量的张成空间内,则称它们是“线性相关”的。

另一方面,如果所有向量都给张成空间增加了新的维度,它们就被称为是“线性无关”的。

最后,我们就可以引出基的严格定义

向量空间的一个基是张成该空间的一个线性无关的向量集。

这里写图片描述

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值