【PAT】第五章 数学问题

第五章 数学问题

5.1 简单数学

是时候检验你的数学水平了!


5.2 最大公约数和最小公倍数

5.2.1 最大公约数

定理:设 a a a b b b 均为正整数,则
g c d ( a , b ) = g c d ( b , a % b ) gcd(a,b)=gcd(b,a\%b) gcd(a,b)=gcd(b,a%b)

int gcd(int a,int b)
{
	if(b==0) return a;
	else return gcd(b,a%b);
}

5.2.2 最小公倍数

ATTENTION

  • ab/d,ab可能会溢出。

l c m ( a , b ) = a / d ∗ b lcm(a,b)=a/d*b lcm(a,b)=a/db


5.3 分数的四则运算

5.3.1 分数的表示和化简

1. 分数的表示

分数最好写成假分数的形式。

【注】分数计算很容易溢出,注意!

struct fraction{
	int up,down; 	//分子、分母
};

要求:

  • down为非负数,若分数为负,只有up为负;
  • 如果分数为0,使分子(up)为0,分母(down)为1;
  • 分子和分母没有除了1以外的公约数。
2. 分数的化简

基本思路

  • 如果分母down为负数,令分子和分母都为相反数
  • 如果分子up为0,另分母down为1;
  • 约分:求出分子 绝对值 和分母 绝对值 的最大公约数d,让分子和分母同除以d
fraction reduction(fraction result)
{
	if(result.down<0)
	{
		result.down=-result.down;
		result.up=-result.up;
	}
	
	if(result.up==0)
		result.down=1;
	else
	{
		int d=gcd(abs(result.up),abs(result.down));
		result.down/=d;
		result.up/=d;
	}
	return result;
}

5.3.2 分数的四则运算

1. 分数的加法

f 1. u p ∗ f 2. d o w n + f 2. u p ∗ f 1. d o w n f 1. d o w n ∗ f 2. d o w n \frac{f1.up*f2.down+f2.up*f1.down}{f1.down*f2.down} f1.downf2.downf1.upf2.down+f2.upf1.down
ATTENTION

  • 要约分!!!
  • 分子和分母在约分前都有可能超过int的范围,要设置成long long类型。
fraction add(fraction f1,fraction f2)
{
	fraction result;
	result.up=f1.up*f2.down+f2.up*f1.down;
	result.down=f1.down*f2.down;
	return reduction(result); 	//!!!
}
2. 分数的减法

f 1. u p ∗ f 2. d o w n − f 2. u p ∗ f 1. d o w n f 1. d o w n ∗ f 2. d o w n \frac{f1.up*f2.down-f2.up*f1.down}{f1.down*f2.down} f1.downf2.downf1.upf2.downf2.upf1.down
ATTENTION

  • 要约分!!!
  • 分子和分母在约分前都有可能超过int的范围,要设置成long long类型。
fraction minu(fraction f1,fraction f2)
{
	fraction result;
	result.up=f1.up*f2.down-f2.up*f1.down;
	result.down=f1.down*f2.down;
	return reduction(result); 	//!!!
}
3. 分数的乘法

f 1. u p ∗ f 2. u p f 1. d o w n ∗ f 2. d o w n \frac{f1.up*f2.up}{f1.down*f2.down} f1.downf2.downf1.upf2.up
ATTENTION

  • 要约分!!!
  • 分子分母可能超过int型范围,要用long long 存储!!!
fraction multi(fraction f1,fraction f2)
{
	fraction result;
	result.up=f1.up*f2.up;
	result.down=f1.down*f2.down;
	return reduction(result); 	//!!!
}
4. 分数的除法

f 1. u p ∗ f 2. d o w n f 1. d o w n ∗ f 2. u p \frac{f1.up*f2.down}{f1.down*f2.up} f1.downf2.upf1.upf2.down
ATTENTION

  • 要约分!!!
  • 除数不能为0! 如果读入的除数为0(f2.up==0),直接输出题目要求的语句。
  • 分子分母可能超过int型范围,要用long long 存储!!!
fraction divide(fraction f1,fraction f2)
{
	fraction result;
	result.up=f1.up*f2.down;
	result.down=f1.down*f2.up;
	return reduction(result); 	//!!!
}

5.4 素数

ATTENTION

  • 1不是素数
  • 素数表长至少要比n1

5.4.1 判断是不是素数

复杂度:O(sqrt(n))

#include <cmath>

//判断n是不是素数
bool isPrime(int n)
{
	if(n<=1) return false; 	//特判,很重要!!
	int sqr=(int)sqrt(1.0*n); 	//sqrt(double) 头文件 cmath 
	for(int i=2;i<=sqr;i++) 	//遍历2到根号n
		if(n%i==0) return false;
	return true;
}

如果n没有接近int型变量的范围上界,则可以

bool isPrime(int n)
{
	if(n<=1) return false; 	//特判,很重要!!
	for(int i=2;i*i<=n;i++) 	//当n(n>1e9)接近int型变量的上界时,i*i会溢出,可设置为long long型 
		if(n%i==0) return false;
	return true;
}

5.4.2 素数表的获取

1. 普通方法

穷举1~n,对每个数进行素数的判断。

复杂度:O(nsqrt(n))。当n<105时,没有问题。

const int maxn=101; 	//表长
int prime[maxn],pCnt=0;
bool p[maxn]={0};
void findPrime()
{
	for(int i=1;i<maxn;i++) 	//i不能等于maxn 
	{
		if(isPrime(i)==true)
		{
			prime[pCnt++]=i;
			p[i]=true;
		}
	}
} 

获取100以内的素数

#include <cstdio>
#include <cmath>

int prime[101],pCnt=0;
bool p[101]={0}; 

bool isPrime(int n)
{
	if(n<=1) return false;
	int sqr=(int)sqrt(1.0*n);
	for(int i=2;i<=sqr;i++)
		if(n%i==0) return false;
	return true;
}
void findPrime()
{
	for(int i=1;i<101;i++)
	{
		if(isPrime(i))
		{
			prime[pCnt++]=i;
			p[i]=true;
		}	
	}
}

int main()
{
	findPrime();
	for(int i=0;i<pCnt;i++)
		printf("%d ",prime[i]);
	return 0;
} 
2.埃式筛法

复杂度:O(Nloglogn)

const int maxn=101; 	//表长
int prime[maxn],pCnt=0;
bool p[maxn]={false}; 	//true表示被筛,false表示是素数 
void findPrime()
{
	for(int i=2;i<maxn;i++)
	{
		if(!p[i]) 	//是素数 
		{
			prime[pCnt++]=i;
			for(int j=i+i;j<maxn;j+=i) 	//筛去所有i的倍数 
				p[j]=true; 	
		}
	}
}

获取100以内的素数

#include <cstdio>
#include <cmath>

int prime[101],pCnt=0;
bool p[101]={0}; 

void findPrime()
{
	for(int i=2;i<101;i++)
	{
		if(!p[i]) 	//是素数 
		{
			prime[pCnt++]=i;
			for(int j=i+i;j<101;j+=i) 	//筛去所有i的倍数 
				p[j]=true; 	
		}
	}
}

int main()
{
	findPrime();
	for(int i=0;i<pCnt;i++)
		printf("%d ",prime[i]);
	return 0;
} 

5.5 质因子分解

ATTENTION

  • 默认n大于1。若题目中要求对1处理,则根据题目条件做特殊处理。

由于每个质数出现次数不一定是1次,所以用结构体。

struct factor{
	int x,cnt; 	//x:质数;cnt:出现次数 
}fac[10];

【注】2×3×5×7×11×13×17×19×23×29已经超过了int范围,所以质数结构体数组fac[]开到10即可。

质因子分解

复杂度: O(sqrt(n))

  • 枚举1-sqrt(n)内的所有质因子p,判断p是不是n的因子。
    如果是,在fac数组中增加质因子p,并初始化其个数为0。然后只要p能够整除n,就一直n/p,每次p的个数++
if(n%prime[i]==0)
{
	fac[num].x=prime[i];
	fac[num].cnt=0;
	while(n%prime[i]==0)
	{
		n/=prime[i];
		fac[num].cnt++;
	}
	num++;
}

如果不是,直接跳过。

  • 如果在上述步骤结束后n仍大于1,说明n有且仅有一个大于sqrt(n)的质因子。将这个质因子加入fac数组,并令其个数为1。
if(n!=1)
{
	fac[num].x=n;
	fac[num++].cnt=1;
}

5.6 大整数运算

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值