数据分析九大课程
分级 | 课程主题 | 核心收获 |
---|---|---|
1-3 | 数据提取 | 数据源、表结构与指标统计口径获取 |
统计分析 | 拆分与对比,异常值的判定方法,基本统计方法 | |
指标体系 | 核心指标设计,指标下钻定位问题方法 | |
4-6 | 异动归因分析 | 异常识别,分析框架搭建,锁定问题,关联业务 |
预测分析 | 基本预估方法,多方法校验 | |
分层分类 | 如何划分象限 | |
7-9 | 项目阶段分析 | 项目四阶段特征及跃迁标志,分别需要解决的核心问题和对应分析方法 |
项目复盘分析 | 从定策略、拿结果、建资源、炼心志四个方面进行全面复盘的方法 | |
最佳实践分析 |
1、数据提取
取什么(指标口径、分析维度、字段);在哪取(数据产品、数据源/表选择、数据检查);怎么取(SQL写作方法、检查)
完整、准确、高效地搞定取数工程
1)取什么-what
确定指标口径:业务需求转换数据指标,明确指标口径
明确分析维度:确定数据维度
写下全部字段:全局意识,保留结果和过程字段
2)在哪取-where
数据产品:报表平台,取数工具等
数据仓库:数据表优先选择主题表,数据源选择Presto-->oneSQL-->Hive
数据源检查:熟悉数据表,了解产品,了解数据表,检查数据质量,完整、准确、唯一
3)怎么取-how
写SQL:习惯,注释+排版,方法,常用语法和报错排查工具,效率,避免数据倾斜,尽早过滤没用的数据,尽可能不用子查询
检查结果:换种写法再写一次,复杂SQL分开跑
2、 指标体系
1)指标大类:供给、平台、用户
2)核心指标:
a. 紧扣object,聚焦核心矛盾,不超过三个
b. 制定方法:根据项目阶段约束指标集 -- 完整识别对象明确各方价值 -- 确定收益指标 -- 确定约束指标
3)过程指标:
a. 基于项目的机会点、问题点和具体迭代动作
b. 制定方法:定观测角度(供给、平台、用户) -- 拆环节(按照流程梳理计算过程 & 不按照流程但拆解核心指标的强支撑指标) -- 理清业务逻辑和原因
结构-按业务逻辑下钻解构,紧抓过程指标算式拆解结构,建立联系
指标体系:理解业务价值,找到指标算式,锚定业务描述与沟通语言
两大能力支撑:业务理解、体系化思考
深入沟通理解业务-->设计核心指标-->设计过程指标
3、 归因分析
1)明确问题
2)分析框架:建立分析体系,了解业务逻辑
a. 公式、指标拆解:MECE分析法,完全穷尽、相互独立
b. 漏斗分析:按照业务流程的先后顺序拆分
e.g. 间夜 = DAU*意向UV*详情-提单转化率*提单-下单转化率*下单-支付转化率*连带率
c. 相关性分析(构成分析):
e.g. 间夜按照 酒店类型、城市类型、平台类型看业务细分单元
3)锁定问题:确定影响的较大因素
✳连环替代法(link)+瀑布图
4)业务归因:主动联系业务方,指标体系与业务动作相关联
假设+证明+沟通:拆解指标,锁定主要变动因素,假设变动原因,证明,得出结论
5)输出报告:金字塔原理,结论先行
※ 补充要点
月初YoY下降:可能是没考虑星期的问题
4、预测分析:
断言——业务是好是坏,哪里好哪里坏,为什么
分析——为什么导致好,为什么导致坏;什么是主原因,什么是次要原因
预测——综合市场趋势和业务情况,判断业务后续走势如何,比如年同比能不能持续
预测基本方法
找规律——拆解、对比、相关(季节性、周期性、增长性;日期对齐、特殊日期调整、策略修正);评估适用性——获取信息逐一CHECK;运用规律——直接使用、调整后使用;多方法互验——只通过1个方法得到的预测结果不可靠
常见场景——业绩预测、热点预测、增长空间预测......;增长因素拆解
常态短期预测案例-间夜目标制定
1)找规律:间夜和时间的关系,间夜和增量策略的关系
拆解:
日期拆解:选择比预测结果要求更细的有效颗粒度。天级日期对齐。
增长因素拆解:基础+增量。存量老客复购+新客增量,基础增长+新项目增量。
对比:YoY、MoM、WoW。注意历史基期数据的处理。
2)做评估:宏观条件、竞争环境、其他影响间夜的要素稳定。
3)交叉实验:
内部互验:日期拆解和增长因素拆解互验,流量侧验证、供给侧验证
竞争互验:结合竞对目标进行验证
市场互验:结合三层四面的市场规模发展和我们的市场渗透率状态进行验证
常态长期预测案例-市场规模预测
1)找规律:间夜或旅游花费与其他市场指标之间的规律
相关:中国人在中国人均间夜与人均GDP关系、中国人在外国出境游花费增速与护照渗透率关系
2)做评估:常态发展,不出现影响GDP发展的重大事件
非常态预测案例-疫情期间夜预测
1)找规律:间夜损失率与疫情阶段的关系
对比:非典疫情期间间夜损失率与疫情阶段的关系
2)做评估:疫情中心区与非典北京接近,其他地区随疫情病例数和管制政策不同,但相对可控
预测常见的坑
1)忽略规律的适用条件,没有对规律进行评估
2)不管实际情况不做业务拆解直接用算法解决
3)一条路走到黑,没有做多维检验
4)历史数据不做分析直接用
5)漏掉影响未来的重要信息
5、分层分类
时间管理、波士顿矩阵(问题业务、明星业务、瘦狗业务、金牛业务)
分层原则:不重不漏(二分法、过程法、要素法、公式法);目标导向(从零思考:为什么做这件事?要达到什么目的?客户需求:与客户的需求充分对齐(不懂就问)是否符合SMART?)
五步法 | 明确目标 | 找到关键要素 | 选择指标 | 设定阈值 | 统计描述 |
---|---|---|---|---|---|
核心问题 | 解决什么问题? 对象是谁 | 根据目标找到关键要素 | 指标映射 | 如何设定阈值 | 展示各层的分布 |
方法 | 问题分类:搞不搞,先搞啥,后搞啥,怎么搞 | 基于指标体系拆解过程指标,基于业务理解的维度下钻 | 要素与指标对应表,选择相关性高的指标 | 基于经验值、目标值、基于统计分布,平均值 | 关键指标展示,阈值说明等 |
6、项目阶段分析
增长曲线 | 探索 | 进攻 | 发展 | 变革 |
---|---|---|---|---|
核心问题 | 找到大机会 验证方法和模式 | 确定优先级 提升市占 | 提效 兼顾市占与收入 | 发现新机会 变革模式 |
阶段要求 | 真、透 | 快、狠 | 精、准 | 真、透 |
临界点标志 | 找到了大机会 有效方法和模式 | 进入市占 TOP2 | 稳定处于TOP2 增长趋缓 | 找到 新机会与新方法 |
项目复盘分析
复盘五步 | 核心问题 | 常用维度 | 通用方法 |
---|---|---|---|
看目标 | 项目目标是什么 | 定性目标 定量目标 目标定级 | 思辩 做对了什么 |
定策略 | 机会找到了吗 一级策略有效吗 策略拆解有效吗 | 机会&一级策略:三段论 策略拆解 | + |
建团队 | 组织能力是否匹配策略 | 量、质、结构 | 做错了什么 |
拿结果 | 关键结果是什么 执行过程表现如何 | 定性目标review 一级目标review 拆解过程目标review | + |
炼心志 | 有什么成长 有什么不足 如何改进 | 成长:新认知、新方法 不足与改进 | 5why分析 |
最佳实践分析
要回答的问题:它是怎么做的?我们能否借鉴学习?
三步法 | 梳理做了什么 | 定位关键成功要素 | 启示 |
---|---|---|---|
要回答的问题 | 1.做了什么 2.效果如何 | 1.关键成功因素是什么 2.做对了什么?做错了什么 | 1.我们可以借鉴什么 2.我们应该避免什么 |
交付物及要求 | Fact(事实) 求真 | Insight(观点) 洞察 | OPinion(观点) 犀利 |
主要方法 | 1.明确研究范围 2.分解研究问题 3.信息输入与整理 | 1.根因分析 2.头脑风暴 | 1.mapping分析 |
其他基本能力 | 事实、观点的区分 |